161
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Disturbances of apoptotic cell clearance in systemic lupus erythematosus

      review-article
      1 , 1 ,
      Arthritis Research & Therapy
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Systemic lupus erythematosus is a multifactorial autoimmune disease with an as yet unknown etiopathogenesis. It is widely thought that self-immunization in systemic lupus is driven by defective clearance of dead and dying cells. In lupus patients, large numbers of apoptotic cells accumulate in various tissues including germinal centers. In the present review, we discuss the danger signals released by apoptotic cells, their triggering of inflammatory responses, and the breakdown of B-cell tolerance. We also review the pathogenic role of apoptotic cell clearance in systemic lupus erythematosus.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte.

          Apoptotic-cell removal is critical for development, tissue homeostasis, and resolution of inflammation. Although many candidate systems exist, only phosphatidylserine has been identified as a general recognition ligand on apoptotic cells. We demonstrate here that calreticulin acts as a second general recognition ligand by binding and activating LDL-receptor-related protein (LRP) on the engulfing cell. Since surface calreticulin is also found on viable cells, a mechanism preventing inadvertent uptake was sought. Disruption of interactions between CD47 (integrin-associated protein) on the target cell and SIRPalpha (SHPS-1), a heavily glycosylated transmembrane protein on the engulfing cell, permitted uptake of viable cells in a calreticulin/LRP-dependent manner. On apoptotic cells, CD47 was altered and/or lost and no longer activated SIRPalpha. These changes on the apoptotic cell create an environment where "don't eat me" signals are rendered inactive and "eat me" signals, including calreticulin and phosphatidylserine, congregate together and signal for removal.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family.

            Q. Lu, G Lemke (2001)
            Receptor tyrosine kinases and their ligands mediate cell-cell communication and interaction in many organ systems, but have not been known to act in this capacity in the mature immune system. We now provide genetic evidence that three closely related receptor tyrosine kinases, Tyro 3, Axl, and Mer, play an essential immunoregulatory role. Mutant mice that lack these receptors develop a severe lymphoproliferative disorder accompanied by broad-spectrum autoimmunity. These phenotypes are cell nonautonomous with respect to lymphocytes and result from the hyperactivation of antigen-presenting cells in which the three receptors are normally expressed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells.

              The T cell immunoglobulin mucin (TIM) proteins regulate T cell activation and tolerance. Here we showed that TIM-4 is expressed on human and mouse macrophages and dendritic cells, and both TIM-4 and TIM-1 specifically bound phosphatidylserine (PS) on the surface of apoptotic cells but not any other phospholipid tested. TIM-4(+) peritoneal macrophages, TIM-1(+) kidney cells, and TIM-4- or TIM-1-transfected cells efficiently phagocytosed apoptotic cells, and phagocytosis could be blocked by TIM-4 or TIM-1 monoclonal antibodies. Mutations in the unique cavity of TIM-4 eliminated PS binding and phagocytosis. TIM-4 mAbs that blocked PS binding and phagocytosis mapped to epitopes in this binding cavity. These results show that TIM-4 and TIM-1 are immunologically restricted members of the group of receptors whose recognition of PS is critical for the efficient clearance of apoptotic cells and prevention of autoimmunity.
                Bookmark

                Author and article information

                Journal
                Arthritis Res Ther
                Arthritis Res. Ther
                Arthritis Research & Therapy
                BioMed Central
                1478-6354
                1478-6362
                2011
                28 February 2011
                28 August 2011
                : 13
                : 1
                : 202
                Affiliations
                [1 ]Section of Rheumatology, Department of Medicine, Temple University, 3322 North Broad Street, Room 205, Philadelphia, PA 19140, USA
                Article
                ar3206
                10.1186/ar3206
                3157636
                21371352
                3d54dce8-a721-407e-b6cf-6b8dc82c9044
                Copyright ©2011 BioMed Central Ltd
                History
                Categories
                Review

                Orthopedics
                Orthopedics

                Comments

                Comment on this article