29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Behavior of bats at wind turbines

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wind turbines are causing unprecedented numbers of bat fatalities. Many fatalities involve tree-roosting bats, but reasons for this higher susceptibility remain unknown. To better understand behaviors associated with risk, we monitored bats at three experimentally manipulated wind turbines in Indiana, United States, from July 29 to October 1, 2012, using thermal cameras and other methods. We observed bats on 993 occasions and saw many behaviors, including close approaches, flight loops and dives, hovering, and chases. Most bats altered course toward turbines during observation. Based on these new observations, we tested the hypotheses that wind speed and blade rotation speed influenced the way that bats interacted with turbines. We found that bats were detected more frequently at lower wind speeds and typically approached turbines on the leeward (downwind) side. The proportion of leeward approaches increased with wind speed when blades were prevented from turning, yet decreased when blades could turn. Bats were observed more frequently at turbines on moonlit nights. Taken together, these observations suggest that bats may orient toward turbines by sensing air currents and using vision, and that air turbulence caused by fast-moving blades creates conditions that are less attractive to bats passing in close proximity. Tree bats may respond to streams of air flowing downwind from trees at night while searching for roosts, conspecifics, and nocturnal insect prey that could accumulate in such flows. Fatalities of tree bats at turbines may be the consequence of behaviors that evolved to provide selective advantages when elicited by tall trees, but are now maladaptive when elicited by wind turbines.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Patterns of Bat Fatalities at Wind Energy Facilities in North America

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Animal orientation strategies for movement in flows.

              For organisms that fly or swim, movement results from the combined effects of the moving medium - air or water - and the organism's own locomotion. For larger organisms, propulsion contributes significantly to progress but the flow usually still provides significant opposition or assistance, or produces lateral displacement ('drift'). Animals show a range of responses to flows, depending on the direction of the flow relative to their preferred direction, the speed of the flow relative to their own self-propelled speed, the incidence of flows in different directions and the proportion of the journey remaining. We here present a classification of responses based on the direction of the resulting movement relative to flow and preferred direction, which is applicable to a range of taxa and environments. The responses adopted in particular circumstances are related to the organisms' locomotory and sensory capacities and the environmental cues available. Advances in biologging technologies and particle tracking models are now providing a wealth of data, which often demonstrate a striking level of convergence in the strategies that very different animals living in very different environments employ when moving in a flow. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                October 21 2014
                October 21 2014
                October 21 2014
                September 29 2014
                : 111
                : 42
                : 15126-15131
                Article
                10.1073/pnas.1406672111
                25267628
                3d9aebc0-311b-481b-98fb-3f6c65e25ff4
                © 2014
                History

                Comments

                Comment on this article