Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Site-Specific Glycosylation in the I-Like Domain of Integrin β1 in Small Extracellular Vesicle-Mediated Malignant Behavior and FAK Activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Integrin β1 plays an essential role in the crosstalk between tumor cells and their microenvironment. Aberrant N-glycosylation of integrin β1 was documented to alter integrin β1 expression, dimerization, and biological function. However, the biological function of site-specific N-glycosylation of integrin β1 on extracellular vesicles is not fully understood. In this study, we mutated putative N-glycosylation sites in different domains of integrin β1. Removal of the N-glycosylation sites on the I-like domain of integrin β1 (termed the Δ4–6 β1 mutant) suppressed focal adhesion kinase (FAK) signaling, cell migration, and adhesion compared with other β1 mutants. Cell adhesion, migration, and activation of FAK were suppressed in recipient MCF7 cells co-cultured with Δ4–6 mutant cells and treated with small extracellular vesicles (sEVs) from Δ4–6 mutant cells. Notably, the wild-type and β1 mutant were both present in sEVs, and could be transferred to recipient cells via sEVs, resulting in changes of cell behavior. Our findings demonstrate the important roles of N-glycosylation of the I-like domain of integrin β1. Moreover, the vesicular Δ4–6 β1 mutant can regulate integrin-mediated functions in recipient cells via sEVs.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Shedding light on the cell biology of extracellular vesicles

          Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively. They are present in biological fluids and are involved in multiple physiological and pathological processes. Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material. Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis. However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Extracellular vesicles: Exosomes, microvesicles, and friends

            Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and RNA. Deficiencies in our knowledge of the molecular mechanisms for EV formation and lack of methods to interfere with the packaging of cargo or with vesicle release, however, still hamper identification of their physiological relevance in vivo. In this review, we focus on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumour exosome integrins determine organotropic metastasis

              Ever since Stephen Paget’s 1889 hypothesis, metastatic organotropism has remained one of cancer’s greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                10 February 2021
                February 2021
                : 22
                : 4
                : 1770
                Affiliations
                Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi’an 710069, China; lincao@ 123456stumail.nwu.edu.cn (L.C.); wuyurong@ 123456stumail.nwu.edu.cn (Y.W.); 18829270128@ 123456163.com (X.W.); xiangli@ 123456nwu.edu.cn (X.L.); zengqtan@ 123456nwu.edu.cn (Z.T.)
                Author notes
                [* ]Correspondence: guanfeng@ 123456nwu.edu.cn
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-6251-2592
                Article
                ijms-22-01770
                10.3390/ijms22041770
                7916680
                33578954
                3dff021c-acaa-4c8d-a580-9b016ce8977d
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 January 2021
                : 07 February 2021
                Categories
                Article

                Molecular biology
                integrin β1,n-glycosylation,sevs,fak,migration,adhesion
                Molecular biology
                integrin β1, n-glycosylation, sevs, fak, migration, adhesion

                Comments

                Comment on this article