27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Post-Golgi Sec Proteins Are Required for Autophagy in Saccharomyces cerevisiae

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macroautophagy is linked to various diseases in humans, including cancer and neurodegeneration. The morphological hallmark is the formation of the double-membrane autophagosome, which is the most complex aspect of macroautophagy. We demonstrate a role for post-Golgi Sec proteins, Sec2 and Sec4, in autophagosome formation.

          Abstract

          In eukaryotic cells, autophagy mediates the degradation of cytosolic contents in response to environmental change. Genetic analyses in fungi have identified over 30 autophagy-related ( ATG) genes and provide substantial insight into the molecular mechanism of this process. However, one essential issue that has not been resolved is the origin of the lipids that form the autophagosome, the sequestering vesicle that is critical for autophagy. Here, we report that two post-Golgi proteins, Sec2 and Sec4, are required for autophagy. Sec4 is a Rab family GTPase, and Sec2 is its guanine nucleotide exchange factor. In sec2 and sec4 conditional mutant yeast, the anterograde movement of Atg9, a proposed membrane carrier, is impaired during starvation conditions. Similarly, in the sec2 mutant, Atg8 is inefficiently recruited to the phagophore assembly site, which is involved in autophagosome biogenesis, resulting in the generation of fewer autophagosomes. We propose that following autophagy induction the function of Sec2 and Sec4 are diverted to direct membrane flow to autophagosome formation.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Autophagosome formation: core machinery and adaptations.

          Eukaryotic cells employ autophagy to degrade damaged or obsolete organelles and proteins. Central to this process is the formation of autophagosomes, double-membrane vesicles responsible for delivering cytoplasmic material to lysosomes. In the past decade many autophagy-related genes, ATG, have been identified that are required for selective and/or nonselective autophagic functions. In all types of autophagy, a core molecular machinery has a critical role in forming sequestering vesicles, the autophagosome, which is the hallmark morphological feature of this dynamic process. Additional components allow autophagy to adapt to the changing needs of the cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagy defends cells against invading group A Streptococcus.

            We found that the autophagic machinery could effectively eliminate pathogenic group A Streptococcus (GAS) within nonphagocytic cells. After escaping from endosomes into the cytoplasm, GAS became enveloped by autophagosome-like compartments and were killed upon fusion of these compartments with lysosomes. In autophagy-deficient Atg5-/- cells, GAS survived, multiplied, and were released from the cells. Thus, the autophagic machinery can act as an innate defense system against invading pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast.

              Heterologous markers are important tools required for the molecular dissection of gene function in many organisms, including Saccharomyces cerevisiae. Moreover, the presence of gene families and isoenzymes often makes it necessary to delete more than one gene. We recently introduced a new and efficient gene disruption cassette for repeated use in budding yeast, which combines the heterologous dominant kan(r) resistance marker with a Cre/loxP-mediated marker removal procedure. Here we describe an additional set of four completely heterologous loxP-flanked marker cassettes carrying the genes URA3 and LEU2 from Kluyveromyces lactis, his5(+) from Schizosaccharomyces pombe and the dominant resistance marker ble(r) from the bacterial transposon Tn5, which confers resistance to the antibiotic phleomycin. All five loxP--marker gene--loxP gene disruption cassettes can be generated using the same pair of oligonucleotides and all can be used for gene disruption with high efficiency. For marker rescue we have created three additional Cre expression vectors carrying HIS3, TRP1 or ble(r) as the yeast selection marker. The set of disruption cassettes and Cre expression plasmids described here represents a significant further development of the marker rescue system, which is ideally suited to functional analysis of the yeast genome.
                Bookmark

                Author and article information

                Contributors
                Role: Monitoring Editor
                Journal
                Mol Biol Cell
                mbc
                mbc
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                1059-1524
                1939-4586
                1 July 2010
                : 21
                : 13
                : 2257-2269
                Affiliations
                [1]Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
                Author notes
                Address correspondence to: Daniel J. Klionsky ( klionsky@ 123456umich.edu )
                Article
                3599643
                10.1091/mbc.E09-11-0969
                2893989
                20444978
                3e14a44a-536c-4ecf-8f66-2a69a5762a07
                © 2010 by The American Society for Cell Biology
                History
                : 20 November 2009
                : 12 April 2010
                : 14 April 2010
                Categories
                Articles
                Membrane Trafficking

                Molecular biology
                Molecular biology

                Comments

                Comment on this article