11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Lar maintains the homeostasis of the hematopoietic organ in Drosophila by regulating insulin signaling in the niche

      1 , 1 , 2 , 1
      Development
      The Company of Biologists

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stem cell compartments in metazoa get regulated by systemic factors as well as local stem cell niche-derived factors. However, the mechanisms by which systemic signals integrate with local factors in maintaining tissue homeostasis remain unclear. Employing the Drosophila lymph gland, which harbors differentiated blood cells, and stem-like progenitor cells and their niche, we demonstrate how a systemic signal interacts and harmonizes with local factor/s to achieve cell type-specific tissue homeostasis. Our genetic analyses uncovered a novel function of Lar , a receptor protein tyrosine phosphatase. Niche-specific loss of Lar leads to upregulated insulin signaling, causing increased niche cell proliferation and ectopic progenitor differentiation. Insulin signaling assayed by PI3K activation is downregulated after the second instar larval stage, a time point that coincides with the appearance of Lar in the hematopoietic niche. We further demonstrate that Lar physically associates with InR and serves as a negative regulator for insulin signaling in the Drosophila larval hematopoietic niche. Whether Lar serves as a localized invariable negative regulator of systemic signals such as insulin in other stem cell niches remains to be explored. Summary: Lar limits insulin signaling to regulate the size and activity of the larval hematopoietic niche in Drosophila.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Stem cells and niches: mechanisms that promote stem cell maintenance throughout life.

          Niches are local tissue microenvironments that maintain and regulate stem cells. Long-predicted from mammalian studies, these structures have recently been characterized within several invertebrate tissues using methods that reliably identify individual stem cells and their functional requirements. Although similar single-cell resolution has usually not been achieved in mammalian tissues, principles likely to govern the behavior of niches in diverse organisms are emerging. Considerable progress has been made in elucidating how the microenvironment promotes stem cell maintenance. Mechanisms of stem cell maintenance are key to the regulation of homeostasis and likely contribute to aging and tumorigenesis when altered during adulthood.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The stem-cell niche as an entity of action.

            Stem-cell populations are established in 'niches'--specific anatomic locations that regulate how they participate in tissue generation, maintenance and repair. The niche saves stem cells from depletion, while protecting the host from over-exuberant stem-cell proliferation. It constitutes a basic unit of tissue physiology, integrating signals that mediate the balanced response of stem cells to the needs of organisms. Yet the niche may also induce pathologies by imposing aberrant function on stem cells or other targets. The interplay between stem cells and their niche creates the dynamic system necessary for sustaining tissues, and for the ultimate design of stem-cell therapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive Oxygen Species prime Drosophila haematopoietic progenitors for differentiation

              Reactive Oxygen Species (ROS), produced during various electron transfer reactions in vivo are generally considered to be deleterious to cells1. In the mammalian haematopoietic system, haematopoietic stem cells (HSCs) contain low ROS levels, but unexpectedly, the common myeloid progenitors (CMPs), produce significantly elevated levels of ROS2. The functional significance of this difference in ROS level in the two progenitor types remains unresolved2,3. Here, we show that Drosophila multipotent haematopoietic progenitors which are largely akin to the mammalian myeloid progenitors4 display elevated levels of ROS under in vivo physiological conditions, which is downregulated upon differentiation. Scavenging the ROS from these haematopoietic progenitors using in vivo genetic tools, retards their differentiation into mature blood cells. Conversely, increasing the haematopoietic progenitor ROS beyond their basal level triggers precocious differentiation into all three mature blood cell types found in Drosophila, through a signaling pathway that involves JNK and FoxO activation as well as Polycomb downregulation. We conclude that the developmentally regulated, moderately high ROS level in the progenitor population sensitizes them to differentiation, and establishes a signaling role for ROS in the regulation of haematopoietic cell fate. Our results lead to a model that could be extended to reveal a probable signaling role for ROS in the differentiation of CMPs in mammalian haematopoietic development and oxidative stress response.
                Bookmark

                Author and article information

                Journal
                Development
                Development
                The Company of Biologists
                0950-1991
                1477-9129
                December 23 2019
                December 15 2019
                December 15 2019
                November 29 2019
                : 146
                : 24
                : dev178202
                Affiliations
                [1 ]Developmental Genetics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Punjab 140306, India
                [2 ]Molecular Cell and Developmental Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Punjab 140306, India
                Article
                10.1242/dev.178202
                6955224
                31784462
                3e171113-56bb-4a43-82c2-6a548907e277
                © 2019

                http://www.biologists.com/user-licence-1-1/

                History

                Comments

                Comment on this article