3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drosophila as a Model to Study Cellular Communication Between the Hematopoietic Niche and Blood Progenitors Under Homeostatic Conditions and in Response to an Immune Stress

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In adult mammals, blood cells are formed from hematopoietic stem progenitor cells, which are controlled by a complex cellular microenvironment called “niche”. Drosophila melanogaster is a powerful model organism to decipher the mechanisms controlling hematopoiesis, due both to its limited number of blood cell lineages and to the conservation of genes and signaling pathways throughout bilaterian evolution. Insect blood cells or hemocytes are similar to the mammalian myeloid lineage that ensures innate immunity functions. Like in vertebrates, two waves of hematopoiesis occur in Drosophila. The first wave takes place during embryogenesis. The second wave occurs at larval stages, where two distinct hematopoietic sites are identified: subcuticular hematopoietic pockets and a specialized hematopoietic organ called the lymph gland. In both sites, hematopoiesis is regulated by distinct niches. In hematopoietic pockets, sensory neurons of the peripheral nervous system provide a microenvironment that promotes embryonic hemocyte expansion and differentiation. In the lymph gland blood cells are produced from hematopoietic progenitors. A small cluster of cells called Posterior Signaling Centre (PSC) and the vascular system, along which the lymph gland develops, act collectively as a niche, under homeostatic conditions, to control the balance between maintenance and differentiation of lymph gland progenitors. In response to an immune stress such as wasp parasitism, lymph gland hematopoiesis is drastically modified and shifts towards emergency hematopoiesis, leading to increased progenitor proliferation and their differentiation into lamellocyte, a specific blood cell type which will neutralize the parasite. The PSC is essential to control this emergency response. In this review, we summarize Drosophila cellular and molecular mechanisms involved in the communication between the niche and hematopoietic progenitors, both under homeostatic and stress conditions. Finally, we discuss similarities between mechanisms by which niches regulate hematopoietic stem/progenitor cells in Drosophila and mammals.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          The bone marrow microenvironment at single-cell resolution

          The molecular complexity of the bone marrow (BM) microenvironment and its response to stress are incompletely understood, despite its key role in the regulation of hematopoiesis. Here we map the transcriptional landscape of BM vascular, perivascular, and osteoblast niche populations at single-cell resolution at both homeostasis and under stress hematopoiesis. This analysis revealed a previously unappreciated level of cellular heterogeneity within the BM niche, identified novel cellular subsets, and resolved cellular sources of pro-hematopoietic growth factors, chemokines, and membrane-bound ligands. Under conditions of stress, our studies revealed a significant transcriptional remodeling of these niche elements, including an adipocytic skewing of the perivascular cells. Among the stress-induced changes, we observed that vascular Notch ligand delta-like ligands ( Dll1,4 ) were downregulated. In the absence of vascular Dll4, hematopoietic stem cells (HSC) prematurely induced a myeloid transcriptional program. These findings refine our understanding of the cellular architecture of the BM niche, reveal a dynamic and heterogeneous molecular landscape that is highly sensitive to stress, and illustrate the utility of single cell transcriptomic data in systematically evaluating the regulation of hematopoiesis by discrete niche populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Haematopoietic stem cell activity and interactions with the niche

            The haematopoietic stem cell (HSC) microenvironment in the bone marrow, termed the niche, ensures haematopoietic homeostasis by controlling the proliferation, self-renewal, differentiation and migration of HSCs and progenitor cells at steady state and in response to emergencies and injury. Improved methods for HSC isolation, driven by advances in single-cell and molecular technologies, have led to a better understanding of their behaviour, heterogeneity and lineage fate, and of the niche cells and signals that regulate their function. Niche regulatory signals can be in the form of cell-bound or secreted factors and other local physical cues. A combination of technological advances in bone marrow imaging and genetic manipulation of crucial regulatory factors has enabled the identification of several candidate cell types regulating the niche, including both non-haematopoietic (e.g. perivascular mesenchymal stem and endothelial cells) and HSC-derived (e.g. megakaryocytes, macrophages and regulatory T cells), with better topographical understanding of HSC localization in the bone marrow. Here, we review advances in our understanding of HSC regulation by niches during homeostasis, ageing and malignancy, and discuss their implications for the development of therapies to rejuvenate aged HSCs or niches or to disrupt self-reinforcing malignant niches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The host defense of Drosophila melanogaster.

              To combat infection, the fruit fly Drosophila melanogaster relies on multiple innate defense reactions, many of which are shared with higher organisms. These reactions include the use of physical barriers together with local and systemic immune responses. First, epithelia, such as those beneath the cuticle, in the alimentary tract, and in tracheae, act both as a physical barrier and local defense against pathogens by producing antimicrobial peptides and reactive oxygen species. Second, specialized hemocytes participate in phagocytosis and encapsulation of foreign intruders in the hemolymph. Finally, the fat body, a functional equivalent of the mammalian liver, produces humoral response molecules including antimicrobial peptides. Here we review our current knowledge of the molecular mechanisms underlying Drosophila defense reactions together with strategies evolved by pathogens to evade them.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                16 August 2021
                2021
                : 12
                : 719349
                Affiliations
                [1]MCD/UMR5077, Centre de Biologie Intégrative (CBI) , Toulouse, France
                Author notes

                Edited by: Stéphane J. C. Mancini, UMR1236 Microenvironnement, Différenciation cellulaire, Immunologie et Cancer (INSERM), France

                Reviewed by: Jiwon Shim, Hanyang University, South Korea; Lolitika Mandal, Indian Institute of Science Education and Research Mohali, India

                *Correspondence: Michèle Crozatier, michele.crozatier-borde@ 123456univ-tlse3.fr

                †These authors have contributed equally to this work

                This article was submitted to Cytokines and Soluble Mediators in Immunity, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2021.719349
                8415499
                34484226
                7d6bc604-12cf-4aa4-98c1-3a04d220d477
                Copyright © 2021 Morin-Poulard, Tian, Vanzo and Crozatier

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 June 2021
                : 26 July 2021
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 108, Pages: 11, Words: 5421
                Funding
                Funded by: Fondation pour la Recherche Médicale 10.13039/501100002915
                Funded by: Ligue Contre le Cancer 10.13039/501100004099
                Funded by: Association pour la Recherche sur le Cancer 10.13039/100007391
                Funded by: China Scholarship Council 10.13039/501100004543
                Categories
                Immunology
                Review

                Immunology
                drosophila,lymph gland,niche,hematopoiesis,immune stress
                Immunology
                drosophila, lymph gland, niche, hematopoiesis, immune stress

                Comments

                Comment on this article