1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intraoperative localization and preservation of reading in ventral occipitotemporal cortex

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Resective surgery in language-dominant ventral occipitotemporal cortex (vOTC) carries the risk of causing impairment to reading. Because it is not on the lateral surface, it is not easily accessible for intraoperative mapping, and extensive stimulation mapping can be time-consuming. Here the authors assess the feasibility of using task-based electrocorticography (ECoG) recordings intraoperatively to help guide stimulation mapping of reading in vOTC.

          METHODS

          In 11 patients undergoing extraoperative, intracranial seizure mapping, the authors recorded induced broadband gamma activation (70–150 Hz) during a visual category localizer. In 2 additional patients, whose pathologies necessitated resections in language-dominant vOTC, task-based functional mapping was performed intraoperatively using subdural ECoG alongside direct cortical stimulation.

          RESULTS

          Word-responsive cortex localized using ECoG showed a high sensitivity (72%) to stimulation-induced reading deficits, and the confluence of ECoG and stimulation-positive sites appears to demarcate the visual word form area. Intraoperative task-based ECoG mapping was possible in < 3 minutes, providing a high signal quality, and initial intraoperative data analysis took < 3 minutes, allowing for rapid assessment of broad areas of cortex. Cortical areas critical for reading were mapped and successfully preserved, while also enabling pathological tissue to be completely removed.

          CONCLUSIONS

          Eloquent cortex in ventral visual cortex can be rapidly mapped intraoperatively using ECoG. This method acts to guide high-probability targets for stimulation with limited patient participation and can be used to avoid iatrogenic dyslexia following surgery.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Cortical surface-based analysis. I. Segmentation and surface reconstruction.

          Several properties of the cerebral cortex, including its columnar and laminar organization, as well as the topographic organization of cortical areas, can only be properly understood in the context of the intrinsic two-dimensional structure of the cortical surface. In order to study such cortical properties in humans, it is necessary to obtain an accurate and explicit representation of the cortical surface in individual subjects. Here we describe a set of automated procedures for obtaining accurate reconstructions of the cortical surface, which have been applied to data from more than 100 subjects, requiring little or no manual intervention. Automated routines for unfolding and flattening the cortical surface are described in a companion paper. These procedures allow for the routine use of cortical surface-based analysis and visualization methods in functional brain imaging. Copyright 1999 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distributed and overlapping representations of faces and objects in ventral temporal cortex.

            The functional architecture of the object vision pathway in the human brain was investigated using functional magnetic resonance imaging to measure patterns of response in ventral temporal cortex while subjects viewed faces, cats, five categories of man-made objects, and nonsense pictures. A distinct pattern of response was found for each stimulus category. The distinctiveness of the response to a given category was not due simply to the regions that responded maximally to that category, because the category being viewed also could be identified on the basis of the pattern of response when those regions were excluded from the analysis. Patterns of response that discriminated among all categories were found even within cortical regions that responded maximally to only one category. These results indicate that the representations of faces and objects in ventral temporal cortex are widely distributed and overlapping.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The unique role of the visual word form area in reading.

              Reading systematically activates the left lateral occipitotemporal sulcus, at a site known as the visual word form area (VWFA). This site is reproducible across individuals/scripts, attuned to reading-specific processes, and partially selective for written strings relative to other categories such as line drawings. Lesions affecting the VWFA cause pure alexia, a selective deficit in word recognition. These findings must be reconciled with the fact that human genome evolution cannot have been influenced by such a recent and culturally variable activity as reading. Capitalizing on recent functional magnetic resonance imaging experiments, we provide strong corroborating evidence for the hypothesis that reading acquisition partially recycles a cortical territory evolved for object and face recognition, the prior properties of which influenced the form of writing systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Journal of Neurosurgery
                Journal of Neurosurgery Publishing Group (JNSPG)
                0022-3085
                1933-0693
                December 01 2022
                December 01 2022
                : 137
                : 6
                : 1610-1617
                Affiliations
                [1 ]Vivian L. Smith Department of Neurosurgery, McGovern Medical School at UT Health Houston;
                [2 ]Texas Institute for Restorative Neurotechnologies, University of Texas Health Science Center at Houston; and
                [3 ]Memorial Hermann Hospital, Texas Medical Center, Houston, Texas
                Article
                10.3171/2022.2.JNS22170
                10193503
                35395633
                3e3514a4-09cc-4192-b0d0-7a5df8ae745f
                © 2022
                History

                Comments

                Comment on this article