Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Food Addiction and Obesity: Do Macronutrients Matter?

      article-commentary
      1
      Frontiers in Neuroenergetics
      Frontiers Research Foundation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An article published in April 2012 by the Nature Reviews Neuroscience (Ziauddeen et al., 2012) calls for cautiousness in applying the addiction model to obesity. This scrupulous review described the highly consequential results from B. Hoebel's lab concerning binge-like eating behaviors of rats (Avena et al., 2008, 2009; Bocarsly et al., 2011). Referring to these results, Ziauddeen and colleagues concluded that the binge behaviors relate to the palatability of the foods independently of their macronutrient composition. Earlier, also basing on the works of Hoebel and colleagues, I have been able to draw quite a different conclusion – fat per se, although highly palatable, is not as addictive as carbohydrates and is not obesogenic (Zilberter, 2011). In yet another paper (Peters, 2012), A. Peters interpreted results of Avena et al. (2008) as a proof that “sugar addiction” fails causing obesity. Here, I take a closer look at the Hoebel's model of addiction (Avena et al., 2008, 2009; Berner et al., 2009; Avena, 2010; Avena and Gold, 2011; Bocarsly et al., 2011) while keeping in mind the role of macronutrients. Food Addiction An opinion exists that rather than an observational link, a causality exists between food addiction and obesity (Gold, 2004; Liu et al., 2006; Corsica and Pelchat, 2010; Johnson and Kenny, 2010). Another opinion is that such a causality does not exist (Peters, 2012) or even that a mere link between them should be considered with caution (Ziauddeen et al., 2012). The caution notwithstanding, it has been shown (and is discussed by Ziauddeen et al., 2012) that drug addiction and food addiction have similar effects, e.g., on the dopaminergic system (Volkow et al., 2008; Gearhardt et al., 2009; Stice and Dagher, 2010) where they “overlap” (Avena et al., 2012). In human subjects, food addiction has been associated with similar patterns of neural activation as substance addiction in anterior cingulated cortex, medial orbitofrontal cortex, and amygdala (Gearhardt et al., 2011b). “Common hedonic mechanisms may therefore underlie obesity and drug addiction,” concluded Johnson and Kenny (2010). Addiction liability is being discussed inline with development of obesity pharmacotherapy (Greene et al., 2011). Carbohydrate Addiction Carbohydrate (CHO) bias in brain's control of energy homeostasis (Zilberter, 2011) reveals itself in several well known ways including the phenomena termed “positive reward,” “hedonism,” “wanting,” “liking,” etc. (Berridge et al., 2010; Gold, 2011). The “sweet-addiction” comparable by magnitude with alcohol addiction (Kampov-Polevoy et al., 2003) and drug addictions (Stoops et al., 2010) is well documented. Gold (2011) argued that deficit in “reward” is coupled with obesity and this coupling is common for sugar, cocaine, and heroin addictions. Gearhardt et al. (2011b), referring to the aforementioned work of Johnson and Kenny, argued that only “hyper-palatable” foods rich in fat and sugar can cause addiction. Indeed, the combination of fat and sugar resulted in a “reward dysfunction associated with drug addiction and compulsive eating, including continued consumption despite receipt of shocks” (Gearhardt et al., 2011a). A link between food addiction and obesity has also been explicitly postulated (Avena et al., 2009; Corsica and Pelchat, 2010; Gold, 2011). Fat Addiction? Studies from B. Hoebel lab suggest that access to CHO produces different addiction-like behaviors compared with access to fat (Avena and Gold, 2011; Bocarsly et al., 2011; Avena et al., 2012). Nutrient specificity in control of eating behavior was also shown in this lab (Berner et al., 2009). During the “sweet-chow” feeding protocol, rats compensated for the increased sucrose or glucose calories by decreasing chow intake. The authors (Avena et al., 2008) suggested that the increase in sugar intake, while not resulting in obesity, lead to an upregulation of affinity for opioid receptors, which in turn leads to the vicious circle of sugar abuse and might contribute to obesity. In a later study (Avena et al., 2009), when rats were given intermittent daily access to “sweet-fat” food, they voluntarily restricted their intake of standard chow, similar to what has been reported with “sweet-chow” food (Avena et al., 2008). However, this time rats did become overweight unlike in the “sweet-chow” experiment. Authors concluded: “fat may be the macronutrient that results in excess body weight, and sweet taste in the absence of fat may be largely responsible for producing addictive-like behaviors.” Yet pure fat, unlike the CHO-fat combination, lacks obesogenity (Dimitriou et al., 2000). Fat combined with limited CHO content failed to cause overeating and weight gain, while excess CHO in high-fat diets caused obesity and metabolic impairment (Lomba et al., 2009). Metabolic studies show that CHO restriction in high-fat diets exerts neuroprotective effects (Figure 1) via induction of heat-shock proteins (Maalouf et al., 2009), growth factors (Maswood et al., 2004), and mitochondrial uncoupling proteins (Liu et al., 2006). Naturally, CHO excess has neurodeteriorating effects as discussed in Zilberter (2011), Hipkiss (2008), or Manzanero et al. (2011). Figure 1 High-fat/high-CHO versus high-fat/low-CHO diets: Addiction, obesity, neurotoxicity and neuroprotection are affected diametrically opposite ways. Summarized from Avena and Gold (2011), Bocarsly et al. (2011), Avena et al. (2012), Berner et al. (2009), Maalouf et al. (2009), Maswood et al. (2004), Liu et al. (2006), Zilberter (2011), Hipkiss (2008), Manzanero et al. (2011). Red arrows: increasing a function or a process. Green arrows: decreasing a function or a process. Conclusion Taking into account the well-defined metabolism-related features of a diet can help avoiding ambiguity in definition of diet types and aid in data interpretations. From this standpoint, macronutrients play a crucial role in determining diet's behavioral and metabolic consequences.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Addiction-like reward dysfunction and compulsive eating in obese rats: Role for dopamine D2 receptors

          We found that development of obesity was coupled with the emergence of a progressively worsening brain reward deficit. Similar changes in reward homeostasis induced by cocaine or heroin is considered a critical trigger in the transition from casual to compulsive drug-taking. Accordingly, we detected compulsive-like feeding behavior in obese but not lean rats, measured as palatable food consumption that was resistant to disruption by an aversive conditioned stimulus. Striatal dopamine D2 receptors (D2R) were downregulated in obese rats, similar to previous reports in human drug addicts. Moreover, lentivirus-mediated knockdown of striatal D2R rapidly accelerated the development of addiction-like reward deficits and the onset of compulsive-like food seeking in rats with extended access to palatable high-fat food. These data demonstrate that overconsumption of palatable food triggers addiction-like neuroadaptive responses in brain reward circuitries and drives the development of compulsive eating. Common hedonic mechanisms may therefore underlie obesity and drug addiction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors.

            Dopamine's role in inhibitory control is well recognized and its disruption may contribute to behavioral disorders of discontrol such as obesity. However, the mechanism by which impaired dopamine neurotransmission interferes with inhibitory control is poorly understood. We had previously documented a reduction in dopamine D2 receptors in morbidly obese subjects. To assess if the reductions in dopamine D2 receptors were associated with activity in prefrontal brain regions implicated in inhibitory control we assessed the relationship between dopamine D2 receptor availability in striatum with brain glucose metabolism (marker of brain function) in ten morbidly obese subjects (BMI>40 kg/m(2)) and compared it to that in twelve non-obese controls. PET was used with [(11)C]raclopride to assess D2 receptors and with [(18)F]FDG to assess regional brain glucose metabolism. In obese subjects striatal D2 receptor availability was lower than controls and was positively correlated with metabolism in dorsolateral prefrontal, medial orbitofrontal, anterior cingulate gyrus and somatosensory cortices. In controls correlations with prefrontal metabolism were not significant but comparisons with those in obese subjects were not significant, which does not permit to ascribe the associations as unique to obesity. The associations between striatal D2 receptors and prefrontal metabolism in obese subjects suggest that decreases in striatal D2 receptors could contribute to overeating via their modulation of striatal prefrontal pathways, which participate in inhibitory control and salience attribution. The association between striatal D2 receptors and metabolism in somatosensory cortices (regions that process palatability) could underlie one of the mechanisms through which dopamine regulates the reinforcing properties of food.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neural correlates of food addiction.

              Research has implicated an addictive process in the development and maintenance of obesity. Although parallels in neural functioning between obesity and substance dependence have been found, to our knowledge, no studies have examined the neural correlates of addictive-like eating behavior. To test the hypothesis that elevated "food addiction" scores are associated with similar patterns of neural activation as substance dependence. Between-subjects functional magnetic resonance imaging study. A university neuroimaging center. Forty-eight healthy young women ranging from lean to obese recruited for a healthy weight maintenance trial. The relation between elevated food addiction scores and blood oxygen level-dependent functional magnetic resonance imaging activation in response to receipt and anticipated receipt of palatable food (chocolate milkshake). Food addiction scores (N = 39) correlated with greater activation in the anterior cingulate cortex, medial orbitofrontal cortex, and amygdala in response to anticipated receipt of food (P < .05, false discovery rate corrected for multiple comparisons in small volumes). Participants with higher (n = 15) vs lower (n = 11) food addiction scores showed greater activation in the dorsolateral prefrontal cortex and the caudate in response to anticipated receipt of food but less activation in the lateral orbitofrontal cortex in response to receipt of food (false discovery rate-corrected P < .05). Similar patterns of neural activation are implicated in addictive-like eating behavior and substance dependence: elevated activation in reward circuitry in response to food cues and reduced activation of inhibitory regions in response to food intake.
                Bookmark

                Author and article information

                Journal
                Front Neuroenergetics
                Front Neuroenergetics
                Front. Neuroenerg.
                Frontiers in Neuroenergetics
                Frontiers Research Foundation
                1662-6427
                30 May 2012
                2012
                : 4
                : 7
                Affiliations
                [1] 1simpleInfotonic Consultancy Stockholm, Sweden
                Author notes
                Article
                10.3389/fnene.2012.00007
                3362736
                22661943
                3e353b17-f8ac-4242-9a8b-bd8897ddaad0
                Copyright © 2012 Zilberter.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 18 April 2012
                : 02 May 2012
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 30, Pages: 2, Words: 1889
                Categories
                Neuroscience
                General Commentary

                Neurosciences
                Neurosciences

                Comments

                Comment on this article