Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of Shiga toxin-producing Escherichia coli isolated from healthy pigs in China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Shiga toxin-producing Escherichia coli (STEC) is recognized as an important human diarrheal pathogen. Swine plays an important role as a carrier of this pathogen. In this study we determined the prevalence and characteristics of STEC from healthy swine collected between May 2011 and August 2012 from 3 cities/provinces in China.

          Results

          A total of 1003 samples, including 326 fecal, 351 small intestinal contents and 326 colon contents samples, was analyzed. Two hundred and fifty five samples were stx-positive by PCR and 93 STEC isolates were recovered from 62 stx-positive samples. Twelve O serogroups and 19 O:H serotypes including 6 serotypes (O100:H20/[H20], O143:H38/[H38], O87:H10, O172:H30/[H30], O159:H16, O9:H30/[H30]) rarely found in swine and ruminants were identified. All 93 STEC isolates harbored stx 2 only, all of which were stx 2e subtype including 1 isolate being a new variant of stx 2e. 53.76%, 15.05% and 2.15% STEC isolates carried astA, hlyA and ehxA respectively. Four STEC isolates harbored the high-pathogenicity island. Of the 15 adherence-associated genes tested, 13 ( eae, efa1, iha, lpfA O113, lpfA O157/OI-154, lpfA O157/OI-141, toxB, saa, F4, F5, F6, F17 or F41) were all absent while 2 ( paa and F18) were present in 7 and 4 STEC isolates respectively. The majority of the isolates were resistant to tetracycline (79.57%), nalidixic acid (78.49%), trimethoprim-sulfamethoxazole (73.12%) and kanamycin (55.91%). The STEC isolates were divided into 63 pulsed-field gel electrophoresis patterns and 21 sequence types (STs). Isolates of the same STs generally showed the same or similar drug resistance patterns. A higher proportion of STEC isolates from Chongqing showed multidrug resistance with one ST (ST3628) resistant to 14 antimicrobials.

          Conclusions

          Our results indicate that swine is a significant reservoir of STEC strains in China. Based on comparison by serotypes and sequence types with human strains and presence of virulence genes, the swine STEC may have a low potential to cause human disease.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Diarrheagenic Escherichia coli.

          Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler's diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (entero-pathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections.

            Since their initial recognition 20 years ago, Shiga toxin-producing Escherichia coli (STEC) strains have emerged as an important cause of serious human gastrointestinal disease, which may result in life-threatening complications such as hemolytic-uremic syndrome. Food-borne outbreaks of STEC disease appear to be increasing and, when mass-produced and mass-distributed foods are concerned, can involve large numbers of people. Development of therapeutic and preventative strategies to combat STEC disease requires a thorough understanding of the mechanisms by which STEC organisms colonize the human intestinal tract and cause local and systemic pathological changes. While our knowledge remains incomplete, recent studies have improved our understanding of these processes, particularly the complex interaction between Shiga toxins and host cells, which is central to the pathogenesis of STEC disease. In addition, several putative accessory virulence factors have been identified and partly characterized. The capacity to limit the scale and severity of STEC disease is also dependent upon rapid and sensitive diagnostic procedures for analysis of human samples and suspect vehicles. The increased application of advanced molecular technologies in clinical laboratories has significantly improved our capacity to diagnose STEC infection early in the course of disease and to detect low levels of environmental contamination. This, in turn, has created a potential window of opportunity for future therapeutic intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathogenomics of the virulence plasmids of Escherichia coli.

              Bacterial plasmids are self-replicating, extrachromosomal elements that are key agents of change in microbial populations. They promote the dissemination of a variety of traits, including virulence, enhanced fitness, resistance to antimicrobial agents, and metabolism of rare substances. Escherichia coli, perhaps the most studied of microorganisms, has been found to possess a variety of plasmid types. Included among these are plasmids associated with virulence. Several types of E. coli virulence plasmids exist, including those essential for the virulence of enterotoxigenic E. coli, enteroinvasive E. coli, enteropathogenic E. coli, enterohemorrhagic E. coli, enteroaggregative E. coli, and extraintestinal pathogenic E. coli. Despite their diversity, these plasmids belong to a few plasmid backbones that present themselves in a conserved and syntenic manner. Thanks to some recent research, including sequence analysis of several representative plasmid genomes and molecular pathogenesis studies, the evolution of these virulence plasmids and the implications of their acquisition by E. coli are now better understood and appreciated. Here, work involving each of the E. coli virulence plasmid types is summarized, with the available plasmid genomic sequences for several E. coli pathotypes being compared in an effort to understand the evolution of these plasmid types and define their core and accessory components.
                Bookmark

                Author and article information

                Journal
                BMC Microbiol
                BMC Microbiol
                BMC Microbiology
                BioMed Central
                1471-2180
                2014
                6 January 2014
                : 14
                : 5
                Affiliations
                [1 ]State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
                [2 ]Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
                [3 ]School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
                [4 ]Biochemical and Molecular Biological Department, School of Biotechnology, Southwest University, Chongqing, China
                [5 ]Department of Microbiology, School of Basic Medical Sciences, Guiyang Medical University, Guiyang, China
                [6 ]Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
                Article
                1471-2180-14-5
                10.1186/1471-2180-14-5
                3893481
                24393167
                3e470e7f-82d2-4c17-bc29-abf65b86fc3d
                Copyright © 2014 Meng et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 June 2013
                : 2 January 2014
                Categories
                Research Article

                Microbiology & Virology
                swine,pulsed-field gel electrophoresis,putative virulence genes,antibiotic resistance,shiga toxin-producing escherichia coli (stec),multilocus sequence typing,shiga toxin,adhesin genes

                Comments

                Comment on this article