Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Approaches to Tay-Sachs Disease Therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tay-Sachs disease belongs to the group of autosomal-recessive lysosomal storage metabolic disorders. This disease is caused by β-hexosaminidase A (HexA) enzyme deficiency due to various mutations in α-subunit gene of this enzyme, resulting in GM2 ganglioside accumulation predominantly in lysosomes of nerve cells. Tay-Sachs disease is characterized by acute neurodegeneration preceded by activated microglia expansion, macrophage and astrocyte activation along with inflammatory mediator production. In most cases, the disease manifests itself during infancy, the “infantile form,” which characterizes the most severe disorders of the nervous system. The juvenile form, the symptoms of which appear in adolescence, and the most rare form with late onset of symptoms in adulthood are also described. The typical features of Tay-Sachs disease are muscle weakness, ataxia, speech, and mental disorders. Clinical symptom severity depends on residual HexA enzymatic activity associated with some mutations. Currently, Tay-Sachs disease treatment is based on symptom relief and, in case of the late-onset form, on the delay of progression. There are also clinical reports of substrate reduction therapy using miglustat and bone marrow or hematopoietic stem cell transplantation. At the development stage there are methods of Tay-Sachs disease gene therapy using adeno- or adeno-associated viruses as vectors for the delivery of cDNA encoding α and β HexA subunit genes. Effectiveness of this approach is evaluated in α or β HexA subunit defective model mice or Jacob sheep, in which Tay-Sachs disease arises spontaneously and is characterized by the same pathological features as in humans. This review discusses the possibilities of new therapeutic strategies in Tay-Sachs disease therapy aimed at preventing neurodegeneration and neuroinflammation.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Replacement therapy for inherited enzyme deficiency--macrophage-targeted glucocerebrosidase for Gaucher's disease.

          Gaucher's disease, the most prevalent of the sphingolipid storage disorders, is caused by a deficiency of the enzyme glucocerebrosidase (glucosylceramidase). Enzyme replacement was proposed as a therapeutic strategy for this disorder in 1966. To assess the clinical effectiveness of this approach, we infused macrophage-targeted human placental glucocerebrosidase (60 IU per kilogram of body weight every 2 weeks for 9 to 12 months) into 12 patients with type 1 Gaucher's disease who had intact spleens. The frequency of infusions was increased to once a week in two patients (children) during part of the trial because they had clinically aggressive disease. The hemoglobin concentration increased in all 12 patients, and the platelet count in 7. Serum acid phosphatase activity decreased in 10 patients during the trial, and the plasma glucocerebroside level in 9. Splenic volume decreased in all patients after six months of treatment, and hepatic volume in five. Early signs of skeletal improvements were seen in three patients. The enzyme infusions were well tolerated, and no antibody to the exogenous enzyme developed. Intravenous administration of macrophage-targeted glucocerebrosidase produces objective clinical improvement in patients with type 1 Gaucher's disease. The hematologic and visceral responses to enzyme replacement develop more rapidly than the skeletal response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Lysosomal storage diseases

            Lysosomes are cytoplasmic organelles that contain a variety of different hydrolases. A genetic deficiency in the enzymatic activity of one of these hydrolases will lead to the accumulation of the material meant for lysosomal degradation. Examples include glycogen in the case of Pompe disease, glycosaminoglycans in the case of the mucopolysaccharidoses, glycoproteins in the cases of the oligosaccharidoses, and sphingolipids in the cases of Niemann-Pick disease types A and B, Gaucher disease, Tay-Sachs disease, Krabbe disease, and metachromatic leukodystrophy. Sometimes, the lysosomal storage can be caused not by the enzymatic deficiency of one of the hydrolases, but by the deficiency of an activator protein, as occurs in the AB variant of GM2 gangliosidosis. Still other times, the accumulated lysosomal material results from failed egress of a small molecule as a consequence of a deficient transporter, as in cystinosis or Salla disease. In the last couple of decades, enzyme replacement therapy has become available for a number of lysosomal storage diseases. Examples include imiglucerase, taliglucerase and velaglucerase for Gaucher disease, laronidase for Hurler disease, idursulfase for Hunter disease, elosulfase for Morquio disease, galsulfase for Maroteaux-Lamy disease, alglucosidase alfa for Pompe disease, and agalsidase alfa and beta for Fabry disease. In addition, substrate reduction therapy has been approved for certain disorders, such as eliglustat for Gaucher disease. The advent of treatment options for some of these disorders has led to newborn screening pilot studies, and ultimately to the addition of Pompe disease and Hurler disease to the Recommended Uniform Screening Panel (RUSP) in 2015 and 2016, respectively.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis.

              Gangliosides are the main glycolipids of neuronal plasma membranes. Their surface patterns are generated by coordinated processes, involving biosynthetic pathways of the secretory compartments, catabolic steps of the endolysosomal system, and intracellular trafficking. Inherited defects in ganglioside biosynthesis causing fatal neurodegenerative diseases have been described so far almost exclusively in mouse models, whereas inherited defects in ganglioside catabolism causing various clinical forms of GM1- and GM2-gangliosidoses have long been known. For digestion, gangliosides are endocytosed and reach intra-endosomal vesicles. At the level of late endosomes, they are depleted of membrane-stabilizing lipids like cholesterol and enriched with bis(monoacylglycero)phosphate (BMP). Lysosomal catabolism is catalyzed at acidic pH values by cationic sphingolipid activator proteins (SAPs), presenting lipids to their respective hydrolases, electrostatically attracted to the negatively charged surface of the luminal BMP-rich vesicles. Various inherited defects of ganglioside hydrolases, e.g., of β-galactosidase and β-hexosaminidases, and of GM2-activator protein, cause infantile (with tetraparesis, dementia, blindness) and different protracted clinical forms of GM1- and GM2-gangliosidoses. Mutations yielding proteins with small residual catabolic activities in the lysosome give rise to juvenile and adult clinical forms with a wide range of clinical symptomatology. Apart from patients' differences in their genetic background, clinical heterogeneity may be caused by rather diverse substrate specificities and functions of lysosomal hydrolases, multifunctional properties of SAPs, and the strong regulation of ganglioside catabolism by membrane lipids. Currently, there is no treatment available for neuronal ganglioside storage diseases. Therapeutic approaches in mouse models and patients with juvenile forms of gangliosidoses are discussed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                20 November 2018
                2018
                : 9
                : 1663
                Affiliations
                [1] 1Institute of Fundamental Medicine and Biology, Kazan Federal University , Kazan, Russia
                [2] 2School of Veterinary Medicine and Science, University of Nottingham , Nottingham, United Kingdom
                Author notes

                Edited by: Anna Maria Giudetti, University of Salento, Italy

                Reviewed by: Daniele Vergara, University of Salento, Italy; Spyridon Theofilopoulos, Swansea University, United Kingdom

                *Correspondence: Albert A. Rizvanov, rizvanov@ 123456gmail.com

                This article was submitted to Lipid and Fatty Acid Research, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.01663
                6256099
                30524313
                3f1fefaa-5c70-43a3-ab44-5c9317a4bea2
                Copyright © 2018 Solovyeva, Shaimardanova, Chulpanova, Kitaeva, Chakrabarti and Rizvanov.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 September 2018
                : 05 November 2018
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 108, Pages: 11, Words: 0
                Categories
                Physiology
                Review

                Anatomy & Physiology
                lysosomal storage diseases,gm2-gangliosidosis,β-hexosaminidase,tay-sachs disease,neurodegeneration,inflammation,gene therapy,bone marrow transplantation

                Comments

                Comment on this article