10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tumor Development and Angiogenesis in Adult Brain Tumor: Glioblastoma

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Angiogenesis is the growth of new capillaries from the preexisting blood vessels. Glioblastoma (GBM) tumors are highly vascularized tumors, and glioma growth depends on the formation of new blood vessels. Angiogenesis is a complex process involving proliferation, migration, and differentiation of vascular endothelial cells (ECs) under the stimulation of specific signals. It is controlled by the balance between its promoting and inhibiting factors. Various angiogenic factors and genes have been identified that stimulate glioma angiogenesis. Therefore, attention has been directed to anti-angiogenesis therapy in which glioma proliferation is inhibited by inhibiting the formation of new tumor vessels using angiogenesis inhibitory factors and drugs. Here, in this review, we highlight and summarize the various molecular mediators that regulate GBM angiogenesis with focus on recent clinical research on the potential of exploiting angiogenic pathways as a strategy in the treatment of GBM patients.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Angiogenesis in life, disease and medicine.

          The growth of blood vessels (a process known as angiogenesis) is essential for organ growth and repair. An imbalance in this process contributes to numerous malignant, inflammatory, ischaemic, infectious and immune disorders. Recently, the first anti-angiogenic agents have been approved for the treatment of cancer and blindness. Angiogenesis research will probably change the face of medicine in the next decades, with more than 500 million people worldwide predicted to benefit from pro- or anti-angiogenesis treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drug resistance and the solid tumor microenvironment.

            Resistance of human tumors to anticancer drugs is most often ascribed to gene mutations, gene amplification, or epigenetic changes that influence the uptake, metabolism, or export of drugs from single cells. Another important yet little-appreciated cause of anticancer drug resistance is the limited ability of drugs to penetrate tumor tissue and to reach all of the tumor cells in a potentially lethal concentration. To reach all viable cells in the tumor, anticancer drugs must be delivered efficiently through the tumor vasculature, cross the vessel wall, and traverse the tumor tissue. In addition, heterogeneity within the tumor microenvironment leads to marked gradients in the rate of cell proliferation and to regions of hypoxia and acidity, all of which can influence the sensitivity of the tumor cells to drug treatment. In this review, we describe how the tumor microenvironment may be involved in the resistance of solid tumors to chemotherapy and discuss potential strategies to improve the effectiveness of drug treatment by modifying factors relating to the tumor microenvironment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry.

              Tissue sections from aggressive human intraocular (uveal) and metastatic cutaneous melanomas generally lack evidence of significant necrosis and contain patterned networks of interconnected loops of extracellular matrix. The matrix that forms these loops or networks may be solid or hollow. Red blood cells have been detected within the hollow channel components of this patterned matrix histologically, and these vascular channel networks have been detected in human tumors angiographically. Endothelial cells were not identified within these matrix-embedded channels by light microscopy, by transmission electron microscopy, or by using an immunohistochemical panel of endothelial cell markers (Factor VIII-related antigen, Ulex, CD31, CD34, and KDR[Flk-1]). Highly invasive primary and metastatic human melanoma cells formed patterned solid and hollow matrix channels (seen in tissue sections of aggressive primary and metastatic human melanomas) in three-dimensional cultures containing Matrigel or dilute Type I collagen, without endothelial cells or fibroblasts. These tumor cell-generated patterned channels conducted dye, highlighting looping patterns visualized angiographically in human tumors. Neither normal melanocytes nor poorly invasive melanoma cells generated these patterned channels in vitro under identical culture conditions, even after the addition of conditioned medium from metastatic pattern-forming melanoma cells, soluble growth factors, or regimes of hypoxia. Highly invasive and metastatic human melanoma cells, but not poorly invasive melanoma cells, contracted and remodeled floating hydrated gels, providing a biomechanical explanation for the generation of microvessels in vitro. cDNA microarray analysis of highly invasive versus poorly invasive melanoma tumor cells confirmed a genetic reversion to a pluripotent embryonic-like genotype in the highly aggressive melanoma cells. These observations strongly suggest that aggressive melanoma cells may generate vascular channels that facilitate tumor perfusion independent of tumor angiogenesis.
                Bookmark

                Author and article information

                Contributors
                slakka@uic.edu
                Journal
                Mol Neurobiol
                Mol. Neurobiol
                Molecular Neurobiology
                Springer US (New York )
                0893-7648
                1559-1182
                9 March 2020
                9 March 2020
                2020
                : 57
                : 5
                : 2461-2478
                Affiliations
                [1 ]GRID grid.185648.6, ISNI 0000 0001 2175 0319, Section of Hematology and Oncology, , University of Illinois College of Medicine at Chicago, ; Chicago, IL 60612 USA
                [2 ]GRID grid.185648.6, ISNI 0000 0001 2175 0319, Department of Neurosurgery, , University of Illinois College of Medicine at Chicago, ; Chicago, IL 60612 USA
                Author information
                http://orcid.org/0000-0002-8786-5626
                Article
                1892
                10.1007/s12035-020-01892-8
                7170819
                32152825
                3f20885d-c5e9-4e90-87dd-3a7d250a009c
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 September 2019
                : 14 February 2020
                Categories
                Article
                Custom metadata
                © Springer Science+Business Media, LLC, part of Springer Nature 2020

                Neurosciences
                angiogenesis,anti-angiogenesis therapy,glioblastoma (gbm),clinical trials in glioblastoma (gbm),tumor development

                Comments

                Comment on this article