9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endogenous and Exogenous Modulation of Nrf2 Mediated Oxidative Stress Response in Bovine Granulosa Cells: Potential Implication for Ovarian Function

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nrf2 is a redox sensitive transcription factor regulating the expression of antioxidant genes as defense mechanism against various stressors. The aim of this study is to investigate the potential role of noncoding miRNAs as endogenous and quercetin as exogenous regulators of Nrf2 pathway in bovine granulosa cells. For this cultured granulosa cells were used for modulation of miRNAs (miR-28, 153 and miR-708) targeting the bovine Nrf2 and supplementation of quercentin to investigate the regulatory mechanisms of the Nrf2 antioxidant system. Moreover, cultured cells were treated with hydrogen peroxide to induce oxidative stress in those cells. Our results showed that, oxidative stress activated the expression of Nrf2 as a defense mechanism, while suppressing the expression of those miRNAs. Overexpression of those miRNAs resulted in downregulation of Nrf2 expression resulted in higher ROS accumulation, reduced mitochondrial activity and cellular proliferation. Quercetin supplementation showed its protective role against oxidative stress induced by H 2O 2 by inducing the expression of antioxidant enzymes. In conclusion, this study highlighted the involvement of miR-153, miR-28 and miR-708 in regulatory network of Nrf2 mediated antioxidant system in bovine granulosa cells function. Furthermore, quercetin at a low dose played a protective role in bovine granulosa cells against oxidative stress damage.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution.

          The Keap1–Nrf2 regulatory pathway plays a central role in the protection of cells against oxidative and xenobiotic damage. Under unstressed conditions, Nrf2 is constantly ubiquitinated by the Cul3–Keap1 ubiquitin E3 ligase complex and rapidly degraded in proteasomes. Upon exposure to electrophilic and oxidative stresses, reactive cysteine residues of Keap1 become modified, leading to a decline in the E3 ligase activity, stabilization of Nrf2 and robust induction of a battery of cytoprotective genes. Biochemical and structural analyses have revealed that the intact Keap1 homodimer forms a cherry-bob structure in which one molecule of Nrf2 associates with two molecules of Keap1 by using two binding sites within the Neh2 domain of Nrf2. This two-site binding appears critical for Nrf2 ubiquitination. In many human cancers, missense mutations in KEAP1 and NRF2 genes have been identified. These mutations disrupt the Keap1–Nrf2 complex activity involved in ubiquitination and degradation of Nrf2 and result in constitutive activation of Nrf2. Elevated expression of Nrf2 target genes confers advantages in terms of stress resistance and cell proliferation in normal and cancer cells. Discovery and development of selective Nrf2 inhibitors should make a critical contribution to improved cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis

            Cancer cells are hallmarked by high proliferation and imbalanced redox consumption and signaling. Various oncogenic pathways such as proliferation and evading cell death converge on redox-dependent signaling processes. Nrf2 is a key regulator in these redox-dependent events and operates in cytoprotection, drug metabolism and malignant progression in cancer cells. Here, we show that patients with primary malignant brain tumors (glioblastomas, WHO °IV gliomas, GBM) have a devastating outcome and overall reduced survival when Nrf2 levels are upregulated. Nrf2 overexpression or Keap1 knockdown in glioma cells accelerate proliferation and oncogenic transformation. Further, activation of the Nrf2-Keap1 signaling upregulates xCT (aka SLC7A11 or system Xc −) and amplifies glutamate secretion thereby impacting on the tumor microenvironment. Moreover, both fostered Nrf2 expression and conversely Keap1 inhibition promote resistance to ferroptosis. Altogether, the Nrf2-Keap1 pathway operates as a switch for malignancy in gliomas promoting cell proliferation and resistance to cell death processes such as ferroptosis. Our data demonstrate that the Nrf2-Keap1 pathway is critical for cancer cell growth and operates on xCT. Nrf2 presents the Achilles’ heel of cancer cells and thus provides a valid therapeutic target for sensitizing cancer for chemotherapeutics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Free radicals, oxidative stress, and antioxidants in human health and disease

              Free radicals and other reactive oxygen species (ROS) are constantly formed in the human body. Free-radical mechanisms have been implicated in the pathology of several human diseases, including cancer, atherosclerosis, malaria, and rheumatoid arthritis and neurodegenerative diseases. For example, the superoxide radical (O2 ·−) and hydrogen peroxide (H2O2) are known to be generated in the brain and nervous system in vivo, and several areas of the human brain are rich in iron, which appears to be easily mobilizable in a form that can stimulate free-radical reactions. Antioxidant defenses to remove O2 ·− and H2O2 exist. Superoxide dismutases (SOD) remove O2 ·− by greatly accelerating its conversion to H2O2. Catalases in peroxisomes convert H2O2 into water and O2 and help to dispose of H2O2 generated by the action of the oxidase enzymes that are located in these organelles. Other important H2O2-removing enzymes in human cells are the glutathione peroxidases. When produced in excess, ROS can cause tissue injury. However, tissue injury can itself cause ROS generation (e.g., by causing activation of phagocytes or releasing transition metal ions from damaged cells), which may (or may not, depending on the situation) contribute to a worsening of the injury. Assessment of oxidative damage to biomolecules by means of emerging technologies based on products of oxidative damage to DNA (e.g., 8-hydroxydeoxyguanosine), lipids (e.g., isoprostanes), and proteins (altered amino acids) would not only advance our understanding of the underlying mechanisms but also facilitate supplementation and intervention studies designed and conducted to test antioxidant efficacy in human health and disease.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                02 April 2019
                April 2019
                : 20
                : 7
                : 1635
                Affiliations
                [1 ]Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, 53175 Bonn, Germany; okha@ 123456itw.uni-bonn.de (O.K.); seta@ 123456itw.uni-bonn.de (S.G.); dsal@ 123456itw.uni-bonn.de (D.S.-W.); mtaq@ 123456itw.uni-bonn.de (M.O.T.); cneu@ 123456itw.uni-bonn.de (C.N.); etho@ 123456itw.uni-bonn.de (E.T.); mhoe@ 123456itw.uni-bonn.de (M.H.); ksch@ 123456itw.uni-bonn.de (K.S.)
                [2 ]Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, 53639 Königswinter, Germany
                [3 ]Center of Integrated Dairy Research, University of Bonn, 53175 Bonn, Germany
                Author notes
                Author information
                https://orcid.org/0000-0002-1319-3089
                https://orcid.org/0000-0002-9977-2347
                https://orcid.org/0000-0001-8166-0606
                Article
                ijms-20-01635
                10.3390/ijms20071635
                6480527
                30986945
                3f4c7c2f-da06-4662-bd8b-d32f3280c234
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 February 2019
                : 29 March 2019
                Categories
                Article

                Molecular biology
                nrf2 signaling pathway,mirnas,oxidative stress,quercetin,bovine granulosa cells
                Molecular biology
                nrf2 signaling pathway, mirnas, oxidative stress, quercetin, bovine granulosa cells

                Comments

                Comment on this article