16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NEUROG1 Regulates CDK2 to Promote Proliferation in Otic Progenitors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Loss of spiral ganglion neurons (SGNs) significantly contributes to hearing loss. Otic progenitor cell transplantation is a potential strategy to replace lost SGNs. Understanding how key transcription factors promote SGN differentiation in otic progenitors accelerates efforts for replacement therapies. A pro-neural transcription factor, Neurogenin1 ( Neurog1), is essential for SGN development. Using an immortalized multipotent otic progenitor (iMOP) cell line that can self-renew and differentiate into otic neurons, NEUROG1 was enriched at the promoter of cyclin-dependent kinase 2 ( Cdk2) and neurogenic differentiation 1 ( NeuroD1) genes. Changes in H3K9ac and H3K9me3 deposition at the Cdk2 and NeuroD1 promoters suggested epigenetic regulation during iMOP proliferation and differentiation. In self-renewing iMOP cells, overexpression of NEUROG1 increased CDK2 to drive proliferation, while knockdown of NEUROG1 decreased CDK2 and reduced proliferation. In iMOP-derived neurons, overexpression of NEUROG1 accelerated acquisition of neuronal morphology, while knockdown of NEUROG1 prevented differentiation. Our findings suggest that NEUROG1 can promote proliferation or neuronal differentiation.

          Graphical Abstract

          Highlights

          • NEUROG1 is enriched at the Cdk2 promoter

          • Chromatin at the Cdk2 promoter changes during proliferation and differentiation

          • NEUROG1 promotes expression of CDK2 to drive otic progenitor proliferation

          Abstract

          Song and colleagues showed that NEUROG1 promotes proliferation of immortalized multipotent otic progenitor (iMOP) cells by regulating CDK2 expression. The chromatin state at the Cdk2 promoter changes in proliferating and differentiating iMOP cells. NEUROG1-dependent expression of CDK2 correlates with euchromatin marks during proliferation, while heterochromatin marks associate with prevention of CDK2 expression during differentiation.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid single-step induction of functional neurons from human pluripotent stem cells.

          Available methods for differentiating human embryonic stem cells (ESCs) and induced pluripotent cells (iPSCs) into neurons are often cumbersome, slow, and variable. Alternatively, human fibroblasts can be directly converted into induced neuronal (iN) cells. However, with present techniques conversion is inefficient, synapse formation is limited, and only small amounts of neurons can be generated. Here, we show that human ESCs and iPSCs can be converted into functional iN cells with nearly 100% yield and purity in less than 2 weeks by forced expression of a single transcription factor. The resulting ES-iN or iPS-iN cells exhibit quantitatively reproducible properties independent of the cell line of origin, form mature pre- and postsynaptic specializations, and integrate into existing synaptic networks when transplanted into mouse brain. As illustrated by selected examples, our approach enables large-scale studies of human neurons for questions such as analyses of human diseases, examination of human-specific genes, and drug screening. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cdk1 is sufficient to drive the mammalian cell cycle.

            Unicellular organisms such as yeasts require a single cyclin-dependent kinase, Cdk1, to drive cell division. In contrast, mammalian cells are thought to require the sequential activation of at least four different cyclin-dependent kinases, Cdk2, Cdk3, Cdk4 and Cdk6, to drive cells through interphase, as well as Cdk1 to proceed through mitosis. This model has been challenged by recent genetic evidence that mice survive in the absence of individual interphase Cdks. Moreover, most mouse cell types proliferate in the absence of two or even three interphase Cdks. Similar results have been obtained on ablation of some of the activating subunits of Cdks, such as the D-type and E-type cyclins. Here we show that mouse embryos lacking all interphase Cdks (Cdk2, Cdk3, Cdk4 and Cdk6) undergo organogenesis and develop to midgestation. In these embryos, Cdk1 binds to all cyclins, resulting in the phosphorylation of the retinoblastoma protein pRb and the expression of genes that are regulated by E2F transcription factors. Mouse embryonic fibroblasts derived from these embryos proliferate in vitro, albeit with an extended cell cycle due to inefficient inactivation of Rb proteins. However, they become immortal on continuous passage. We also report that embryos fail to develop to the morula and blastocyst stages in the absence of Cdk1. These results indicate that Cdk1 is the only essential cell cycle Cdk. Moreover, they show that in the absence of interphase Cdks, Cdk1 can execute all the events that are required to drive cell division.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5.

              Cyclin-dependent kinases (cdk) play an essential role in the intracellular control of the cell division cycle (cdc). These kinases and their regulators are frequently deregulated in human tumours. Enzymatic screening has recently led to the discovery of specific inhibitors of cyclin-dependent kinases, such as butyrolactone I, flavopiridol and the purine olomoucine. Among a series of C2, N6, N9-substituted adenines tested on purified cdc2/cyclin B, 2-(1-ethyl-2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine (roscovitine) displays high efficiency and high selectivity towards some cyclin-dependent kinases. The kinase specificity of roscovitine was investigated with 25 highly purified kinases (including protein kinase A, G and C isoforms, myosin light-chain kinase, casein kinase 2, insulin receptor tyrosine kinase, c-src, v-abl). Most kinases are not significantly inhibited by roscovitine. cdc2/cyclin B, cdk2/cyclin A, cdk2/cyclin E and cdk5/p35 only are substantially inhibited (IC50 values of 0.65, 0.7, 0.7 and 0.2 microM, respectively). cdk4/cyclin D1 and cdk6/cyclin D2 are very poorly inhibited by roscovitine (IC50 > 100 microM). Extracellular regulated kinases erk1 and erk2 are inhibited with an IC50 of 34 microM and 14 microM, respectively. Roscovitine reversibly arrests starfish oocytes and sea urchin embryos in late prophase. Roscovitine inhibits in vitro M-phase-promoting factor activity and in vitro DNA synthesis in Xenopus egg extracts. It blocks progesterone-induced oocyte maturation of Xenopus oocytes and in vivo phosphorylation of the elongation factor eEF-1. Roscovitine inhibits the proliferation of mammalian cell lines with an average IC50 of 16 microM. In the presence of roscovitine L1210 cells arrest in G1 and accumulate in G2. In vivo phosphorylation of vimentin on Ser55 by cdc2/cyclin B is inhibited by roscovitine. Through its unique selectivity for some cyclin-dependent kinases, roscovitine provides a useful antimitotic reagent for cell cycle studies and may prove interesting to control cells with deregulated cdc2, cdk2 or cdk5 kinase activities.
                Bookmark

                Author and article information

                Contributors
                Journal
                Stem Cell Reports
                Stem Cell Reports
                Stem Cell Reports
                Elsevier
                2213-6711
                12 October 2017
                14 November 2017
                12 October 2017
                : 9
                : 5
                : 1516-1529
                Affiliations
                [1 ]Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
                [2 ]Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
                [3 ]Department of Biology, University of Iowa, CLAS, 214 BB, Iowa City, IA 52242, USA
                Author notes
                []Corresponding author kwan@ 123456dls.rutgers.edu
                Article
                S2213-6711(17)30418-6
                10.1016/j.stemcr.2017.09.011
                5829327
                29033307
                3f5ceb01-8b44-4945-bd9e-e86ca7d6dd36
                © 2017 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 17 November 2016
                : 13 September 2017
                : 14 September 2017
                Categories
                Article

                auditory,spiral ganglion neurons,inner ear,neurogenin,imop,progenitor,chromatin,epigenetics

                Comments

                Comment on this article