66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          T cell-derived cytokines are important in the development of an effective immune response, but when dysregulated they can promote disease. Here we identify a four-helix bundle cytokine we have called interleukin 31 (IL-31), which is preferentially produced by T helper type 2 cells. IL-31 signals through a receptor composed of IL-31 receptor A and oncostatin M receptor. Expression of IL-31 receptor A and oncostatin M receptor mRNA was induced in activated monocytes, whereas epithelial cells expressed both mRNAs constitutively. Transgenic mice overexpressing IL-31 developed severe pruritus, alopecia and skin lesions. Furthermore, IL-31 receptor expression was increased in diseased tissues derived from an animal model of airway hypersensitivity. These data indicate that IL-31 may be involved in promoting the dermatitis and epithelial responses that characterize allergic and non-allergic diseases.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Lipopolysaccharide-enhanced, Toll-like Receptor 4–dependent T Helper Cell Type 2 Responses to Inhaled Antigen

          Allergic asthma is an inflammatory lung disease initiated and directed by T helper cells type 2 (Th2). The mechanism involved in generation of Th2 responses to inert inhaled antigens, however, is unknown. Epidemiological evidence suggests that exposure to lipopolysaccharide (LPS) or other microbial products can influence the development and severity of asthma. However, the mechanism by which LPS influences asthma pathogenesis remains undefined. Although it is known that signaling through Toll-like receptors (TLR) is required for adaptive T helper cell type 1 (Th1) responses, it is unclear if TLRs are needed for Th2 priming. Here, we report that low level inhaled LPS signaling through TLR4 is necessary to induce Th2 responses to inhaled antigens in a mouse model of allergic sensitization. The mechanism by which LPS signaling results in Th2 sensitization involves the activation of antigen-containing dendritic cells. In contrast to low levels, inhalation of high levels of LPS with antigen results in Th1 responses. These studies suggest that the level of LPS exposure can determine the type of inflammatory response generated and provide a potential mechanistic explanation of epidemiological data on endotoxin exposure and asthma prevalence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Atopic dermatitis.

            Atopic dermatitis is a highly pruritic chronic inflammatory skin disorder affecting 10-20% of children worldwide. Symptoms can persist or begin in adulthood. It is also the most common cause of occupational skin disease in adults. This disease results from an interaction between susceptibility genes, the host's environment, pharmacological abnormalities, skin barrier defects, and immunological factors. New management approaches have evolved from advances in our understanding of the pathobiology of this common skin disorder.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease.

              B cells are important in the development of autoimmune disorders by mechanisms involving dysregulated polyclonal B-cell activation, production of pathogenic antibodies, and co-stimulation of autoreactive T cells. zTNF4 (BLyS, BAFF, TALL-1, THANK) is a member of the tumour necrosis factor (TNF) ligand family that is a potent co-activator of B cells in vitro and in vivo. Here we identify two receptors for zTNF4 and demonstrate a relationship between zTNF4 and autoimmune disease. Transgenic animals overexpressing zTNF4 in lymphoid cells develop symptoms characteristic of systemic lupus erythaematosus (SLE) and expand a rare population of splenic B-Ia lymphocytes. In addition, circulating zTNF4 is more abundant in NZBWF1 and MRL-lpr/lpr mice during the onset and progression of SLE. We have identified two TNF receptor family members, TACI and BCMA, that bind zTNF4. Treatment of NZBWF1 mice with soluble TACI-Ig fusion protein inhibits the development of proteinuria and prolongs survival of the animals. These findings demonstrate the involvement of zTNF4 and its receptors in the development of SLE and identify TACI-Ig as a promising treatment of autoimmune disease in humans.
                Bookmark

                Author and article information

                Journal
                Nature Immunology
                Nat Immunol
                Springer Science and Business Media LLC
                1529-2908
                1529-2916
                July 01 2004
                June 06 2004
                July 01 2004
                : 5
                : 7
                : 752-760
                Article
                10.1038/ni1084
                15184896
                3f6649af-0f58-457f-a2d6-61a89599b5b6
                © 2004

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article