41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of Human Plasma Metabolites Exhibiting Time-of-Day Variation Using an Untargeted Liquid Chromatography–Mass Spectrometry Metabolomic Approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although daily rhythms regulate multiple aspects of human physiology, rhythmic control of the metabolome remains poorly understood. The primary objective of this proof-of-concept study was identification of metabolites in human plasma that exhibit significant 24-h variation. This was assessed via an untargeted metabolomic approach using liquid chromatography–mass spectrometry (LC-MS). Eight lean, healthy, and unmedicated men, mean age 53.6 (SD ± 6.0) yrs, maintained a fixed sleep/wake schedule and dietary regime for 1 wk at home prior to an adaptation night and followed by a 25-h experimental session in the laboratory where the light/dark cycle, sleep/wake, posture, and calorific intake were strictly controlled. Plasma samples from each individual at selected time points were prepared using liquid-phase extraction followed by reverse-phase LC coupled to quadrupole time-of-flight MS analysis in positive ionization mode. Time-of-day variation in the metabolites was screened for using orthogonal partial least square discrimination between selected time points of 10:00 vs. 22:00 h, 16:00 vs. 04:00 h, and 07:00 (d 1) vs. 16:00 h, as well as repeated-measures analysis of variance with time as an independent variable. Subsequently, cosinor analysis was performed on all the sampled time points across the 24-h day to assess for significant daily variation. In this study, analytical variability, assessed using known internal standards, was low with coefficients of variation <10%. A total of 1069 metabolite features were detected and 203 (19%) showed significant time-of-day variation. Of these, 34 metabolites were identified using a combination of accurate mass, tandem MS, and online database searches. These metabolites include corticosteroids, bilirubin, amino acids, acylcarnitines, and phospholipids; of note, the magnitude of the 24-h variation of these identified metabolites was large, with the mean ratio of oscillation range over MESOR (24-h time series mean) of 65% (95% confidence interval [CI]: 49–81%). Importantly, several of these human plasma metabolites, including specific acylcarnitines and phospholipids, were hitherto not known to be 24-h variant. These findings represent an important baseline and will be useful in guiding the design and interpretation of future metabolite-based studies. (Author correspondence: Jooern.Ang@icr.ac.uk or Florence.Raynaud@icr.ac.uk)

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Metabonomics: a platform for studying drug toxicity and gene function.

          The later that a molecule or molecular class is lost from the drug development pipeline, the higher the financial cost. Minimizing attrition is therefore one of the most important aims of a pharmaceutical discovery programme. Novel technologies that increase the probability of making the right choice early save resources, and promote safety, efficacy and profitability. Metabonomics is a systems approach for studying in vivo metabolic profiles, which promises to provide information on drug toxicity, disease processes and gene function at several stages in the discovery-and-development process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ethics and methods for biological rhythm research on animals and human beings.

            This article updates the ethical standards and methods for the conduct of high-quality animal and human biological rhythm research, which should be especially useful for new investigators of the rhythms of life. The editors of Chronobiology International adhere to and endorse the Code of Conduct and Best Practice Guidelines of the Committee On Publication Ethics (COPE), which encourages communication of such updates at regular intervals in the journal. The journal accepts papers representing original work, no part of which was previously submitted for publication elsewhere, except as brief abstracts, as well as in-depth reviews. The majority of research papers published in Chronobiology International entails animal and human investigations. The editors and readers of the journal expect authors of submitted manuscripts to have made an important contribution to the research of biological rhythms and related phenomena using ethical methods/procedures and unbiased, accurate, and honest reporting of findings. Authors of scientific papers are required to declare all potential conflicts of interest. The journal and its editors endorse compliance of investigators to the Guide for the Care and Use of Laboratory Animals of the Institute for Laboratory Animal Research of the National Research Council, relating to the conduct of ethical research on laboratory and other animals, and the principles of the Declaration of Helsinki of the World Medical Association, relating to the conduct of ethical research on human beings. The peer review of manuscripts by Chronobiology International thus includes judgment as to whether or not the protocols and methods conform to ethical standards. Authors are expected to show mastery of the basic methods and procedures of biological rhythm research and proper statistical assessment of data, including the appropriate application of time series data analyses, as briefly reviewed in this article. The journal editors strive to consistently achieve high standards for the research of original and review papers reported in Chronobiology International, and current examples of expectations are presented herein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of the adult human plasma metabolome.

              It is well established that disease states are associated with biochemical changes (e.g., diabetes/glucose, cardiovascular disease/cholesterol), as are responses to chemical agents (e.g., medications, toxins, xenobiotics). Recently, nontargeted methods have been used to identify the small molecules (metabolites) in a biological sample to uncover many of the biochemical changes associated with a disease state or chemical response. Given that these experimental results may be influenced by the composition of the cohort, in the present study we assessed the effects of age, sex and race on the relative concentrations of small molecules (metabolites) in the blood of healthy adults. Using gas- and liquid-chromatography in combination with mass spectrometry, a nontargeted metabolomic analysis was performed on plasma collected from an age- and sex-balanced cohort of 269 individuals. Of the more than 300 unique compounds that were detected, significant changes in the relative concentration of more than 100 metabolites were associated with age. Many fewer differences were associated with sex and fewer still with race. Changes in protein, energy and lipid metabolism, as well as oxidative stress, were observed with increasing age. Tricarboxylic acid intermediates, creatine, essential and nonessential amino acids, urea, ornithine, polyamines and oxidative stress markers (e.g., oxoproline, hippurate) increased with age. Compounds related to lipid metabolism, including fatty acids, carnitine, beta-hydroxybutyrate and cholesterol, were lower in the blood of younger individuals. By contrast, relative concentrations of dehydroepiandrosterone-sulfate (a proposed antiaging androgen) were lowest in the oldest age group. Certain xenobiotics (e.g., caffeine) were higher in older subjects, possibly reflecting decreases in hepatic cytochrome P450 activity. Our nontargeted analytical approach detected a large number of metabolites, including those that were found to be statistically altered with age, sex or race. Age-associated changes were more pronounced than those related to differences in sex or race in the population group we studied. Age, sex and race can be confounding factors when comparing different groups in clinical studies. Future studies to determine the influence of diet, lifestyle and medication are also warranted.
                Bookmark

                Author and article information

                Journal
                Chronobiol Int
                Chronobiol. Int
                lcbi
                Chronobiology International
                Informa Healthcare
                0742-0528
                1525-6073
                August 2012
                23 July 2012
                : 29
                : 7
                : 868-881
                Affiliations
                [1 ]Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, UK
                [2 ]Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
                Author notes
                Address correspondence to Dr. Joo Ern Ang or Dr. Florence Raynaud, Drug Metabolism, Pharmacokinetics & Metabolomics Team, Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey SM2 5NG, United Kingdom. Tel.: +44 (0)2087224383; Fax: +44 (0)2087224309; E-mail: Jooern.Ang@ 123456icr.ac.uk (Joo Ern Ang) or Florence.Raynaud@ 123456icr.ac.uk (Florence Raynaud)
                Article
                10.3109/07420528.2012.699122
                3433180
                22823870
                3fa16c49-345a-47eb-b706-31076cde984a
                © 2012 Informa Healthcare USA, Inc.

                This is an open access article distributed under the Supplemental Terms and Conditions for iOpenAccess articles published in Informa Healthcare journals , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 January 2012
                : 16 February 2012
                : 22 May 2012
                Categories
                Reseach Article

                Molecular biology
                human,daily variation,metabolomics,acylcarnitines,liquid chromatography–mass spectrometry,plasma metabolites

                Comments

                Comment on this article