24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Revealing the structure and distribution changes of Eucalyptus lignin during the hydrothermal and alkaline pretreatments

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An integrated pretreatment process based on hydrothermal pretreatment (HTP) followed by alkaline pretreatment has been applied to treat Eucalyptus. The chemical composition and structure changes of lignin during the pretreatment were comprehensively characterized. The surface morphology of the cell walls and lignin distribution of the pretreated Eucalyptus were detected by scanning electron and confocal Raman microscopies. It was found that the chemical bonds between lignin and hemicelluloses were cleaved during the pretreatment. The results also indicated that the contents of β- O-4′, β- β′, and β-5′ linkages were decreased with the increase of hydrothermal pretreatment temperature and the cleavage of β- O-4′ linkages in lignin was accompanied with repolymerization reactions. 31P NMR analysis showed that the content of aliphatic OH was reduced as the temperature increased and the total phenolic OH was elevated and then declined with the increase of temperature. Raman spectra analysis revealed that the dissolution rate of lignin in the secondary wall regions was faster than that in cell corner middle lamella regions during the pretreatment. These results will enhance the understanding of the cell wall deconstruction during the pretreatment and the mechanism of the integrated pretreatment process acting on Eucalyptus.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Chemical modification of lignins: Towards biobased polymers

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lignin content in natural Populus variants affects sugar release.

            The primary obstacle to producing renewable fuels from lignocellulosic biomass is a plant's recalcitrance to releasing sugars bound in the cell wall. From a sample set of wood cores representing 1,100 individual undomesticated Populus trichocarpa trees, 47 extreme phenotypes were selected across measured lignin content and ratio of syringyl and guaiacyl units (S/G ratio). This subset was tested for total sugar release through enzymatic hydrolysis alone as well as through combined hot-water pretreatment and enzymatic hydrolysis using a high-throughput screening method. The total amount of glucan and xylan released varied widely among samples, with total sugar yields of up to 92% of the theoretical maximum. A strong negative correlation between sugar release and lignin content was only found for pretreated samples with an S/G ratio < 2.0. For higher S/G ratios, sugar release was generally higher, and the negative influence of lignin was less pronounced. When examined separately, only glucose release was correlated with lignin content and S/G ratio in this manner, whereas xylose release depended on the S/G ratio alone. For enzymatic hydrolysis without pretreatment, sugar release increased significantly with decreasing lignin content below 20%, irrespective of the S/G ratio. Furthermore, certain samples featuring average lignin content and S/G ratios exhibited exceptional sugar release. These facts suggest that factors beyond lignin and S/G ratio influence recalcitrance to sugar release and point to a critical need for deeper understanding of cell-wall structure before plants can be rationally engineered for reduced recalcitrance and efficient biofuels production.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lignin depolymerization/repolymerization and its critical role for delignification of aspen wood by steam explosion.

              Steam explosion is an important process for the fractionation of biomass components. In order to understand the behaviour of lignin under the conditions encountered in the steam explosion process, as well as in other types of steam treatment, aspen wood and isolated lignin from aspen were subjected to steam treatment under various conditions. The lignin portion was analyzed using NMR and size exclusion chromatography as major analytical techniques. Thereby, the competition between lignin depolymerization and repolymerization was revealed and the conditions required for these two types of reaction identified. Addition of a reactive phenol, 2-naphthol, was shown to inhibit the repolymerization reaction strongly, resulting in a highly improved delignification by subsequent solvent extraction and an extracted lignin of uniform structure.
                Bookmark

                Author and article information

                Contributors
                bianjing31@bjfu.edu.cn
                rcsun3@bjfu.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                4 April 2017
                4 April 2017
                2017
                : 7
                : 593
                Affiliations
                [1 ]ISNI 0000 0001 1456 856X, GRID grid.66741.32, Beijing Key Laboratory of Lignocellulosic Chemistry, , Beijing Forestry University, ; Beijing, 100083 China
                [2 ]ISNI 0000 0004 1764 3838, GRID grid.79703.3a, State Key Laboratory of Pulp and Paper Engineering, , South China University of Technology, ; Guangzhou, 510640 China
                Article
                711
                10.1038/s41598-017-00711-w
                5429616
                28377625
                3fb15831-622b-4c5f-842d-3aaf219f7ddb
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 December 2016
                : 8 March 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article