Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Oxalobacter formigenes: A new hope as a live biotherapeutic agent in the management of calcium oxalate renal stones

      ,
      Anaerobe
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent advances in understanding the association of gut microbiota with the host have shown evidence of certain bacterial therapeutic potentiality in preventing and treating metabolic diseases. Hyperoxaluria is a severe challenge in nephrology and has led to the novel gut eubiosis as current therapy. The human gut commensal, obligate anaerobic, and intestinal oxalate-degrading strains of Oxalobacter formigenes have drawn a promising significant interest for the next-generation probiotics (NGPs). This nonpathogenic, potential probiotic, and specialist oxalotrophic properties of O. formigenes give a new hope as a live biotherapeutic agent for calcium oxalate renal therapy. Numerous satisfactory outcomes of in vitro and in vivo studies were achieved on evaluating O. formigenes functionality, but the commercial production of this bacterium is yet to be achieved. This bacterium finds diverse application in dietary and endogenous oxalate degradation and the improvement of gut health, on which we concentrated our attention in this review. The relationship between good anaerobic gut bacterial dysbiosis and renal complications is comprehensively discussed to address the need for the development probiotic formulation. However, the commercial production of this bacteria on a broad scale is complex, with numerous obstacles, mainly because they are oxygen-sensitive and difficult to culture. This review will coherently present the current and available methodologies in producing, stabilizing, and delivering these NGPs to treat calcium stones. Moreover, the study presents the extensive work and key milestones achieved in the research on O. formigenes from tale to the truth.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study

          Background It has been reported that the composition of human gut microbiota changes with age; however, few studies have used molecular techniques to investigate the long-term, sequential changes in gut microbiota composition. In this study, we investigated the sequential changes in gut microbiota composition in newborn to centenarian Japanese subjects. Results Fecal samples from 367 healthy Japanese subjects between the ages of 0 and 104 years were analyzed by high-throughput sequencing of amplicons derived from the V3-V4 region of the 16S rRNA gene. Analysis based on bacterial co-abundance groups (CAGs) defined by Kendall correlations between genera revealed that certain transition types of microbiota were enriched in infants, adults, elderly individuals and both infant and elderly subjects. More positive correlations between the relative abundances of genera were observed in the elderly-associated CAGs compared with the infant- and adult-associated CAGs. Hierarchical Ward’s linkage clustering based on the abundance of genera indicated five clusters, with median (interquartile range) ages of 3 (0–35), 33 (24–45), 42 (32–62), 77 (36–84) and 94 (86–98) years. Subjects were predominantly clustered with their matched age; however, some of them fell into mismatched age clusters. Furthermore, clustering based on the proportion of transporters predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) showed that subjects were divided into two age-related groups, the adult-enriched and infant/elderly-enriched clusters. Notably, all the drug transporters based on Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology groups were found in the infant/elderly-enriched cluster. Conclusion Our results indicate some patterns and transition points in the compositional changes in gut microbiota with age. In addition, the transporter property prediction results suggest that nutrients in the gut might play an important role in changing the gut microbiota composition with age. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0708-5) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Dysbiosis of the gut microbiota in disease

            There is growing evidence that dysbiosis of the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders. Intestinal disorders include inflammatory bowel disease, irritable bowel syndrome (IBS), and coeliac disease, while extra-intestinal disorders include allergy, asthma, metabolic syndrome, cardiovascular disease, and obesity. In many of these conditions, the mechanisms leading to disease development involves the pivotal mutualistic relationship between the colonic microbiota, their metabolic products, and the host immune system. The establishment of a ‘healthy’ relationship early in life appears to be critical to maintaining intestinal homeostasis. Whilst we do not yet have a clear understanding of what constitutes a ‘healthy’ colonic microbiota, a picture is emerging from many recent studies identifying particular bacterial species associated with a healthy microbiota. In particular, the bacterial species residing within the mucus layer of the colon, either through direct contact with host cells, or through indirect communication via bacterial metabolites, may influence whether host cellular homeostasis is maintained or whether inflammatory mechanisms are triggered. In addition to inflammation, there is some evidence that perturbations in the gut microbiota is involved with the development of colorectal cancer. In this case, dysbiosis may not be the most important factor, rather the products of interaction between diet and the microbiome. High-protein diets are thought to result in the production of carcinogenic metabolites from the colonic microbiota that may result in the induction of neoplasia in the colonic epithelium. Ever more sensitive metabolomics methodologies reveal a suite of small molecules produced in the microbiome which mimic or act as neurosignallers or neurotransmitters. Coupled with evidence that probiotic interventions may alter psychological endpoints in both humans and in rodent models, these data suggest that CNS-related co-morbidities frequently associated with GI disease may originate in the intestine as a result of microbial dysbiosis. This review outlines the current evidence showing the extent to which the gut microbiota contributes to the development of disease. Based on evidence to date, we can assess the potential to positively modulate the composition of the colonic microbiota and ameliorate disease activity through bacterial intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics

              In 2019, the International Scientific Association for Probiotics and Prebiotics (ISAPP) convened a panel of experts specializing in nutrition, microbial physiology, gastroenterology, paediatrics, food science and microbiology to review the definition and scope of postbiotics. The term ‘postbiotics’ is increasingly found in the scientific literature and on commercial products, yet is inconsistently used and lacks a clear definition. The purpose of this panel was to consider the scientific, commercial and regulatory parameters encompassing this emerging term, propose a useful definition and thereby establish a foundation for future developments. The panel defined a postbiotic as a “preparation of inanimate microorganisms and/or their components that confers a health benefit on the host”. Effective postbiotics must contain inactivated microbial cells or cell components, with or without metabolites, that contribute to observed health benefits. The panel also discussed existing evidence of health-promoting effects of postbiotics, potential mechanisms of action, levels of evidence required to meet the stated definition, safety and implications for stakeholders. The panel determined that a definition of postbiotics is useful so that scientists, clinical triallists, industry, regulators and consumers have common ground for future activity in this area. A generally accepted definition will hopefully lead to regulatory clarity and promote innovation and the development of new postbiotic products. Postbiotics are emerging substances prepared from inactivated microorganisms, in contrast to probiotics, which must be administered alive. This Consensus Statement outlines a definition for the term ‘postbiotics’ as determined by an expert panel convened by the International Scientific Association for Probiotics and Prebiotics.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Anaerobe
                Anaerobe
                Elsevier BV
                10759964
                June 2022
                June 2022
                : 75
                : 102572
                Article
                10.1016/j.anaerobe.2022.102572
                35443224
                3fb76e76-8525-4527-a686-342ce0bec1c3
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article