4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CD73 Rather Than CD39 Is Mainly Involved in Controlling Purinergic Signaling in Calcified Aortic Valve Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study aimed to compare composition of peripheral blood T-cell subsets and assess their surface expression of CD39 and CD73 ectonucleotidases in patients with severe and moderate aortic stenosis (AS) as well as to evaluate involvement of T-cell-mediated immune processes in valve calcification. The study was performed with 38 patients suffering from severe calcified aortic stenosis (SAS), 33 patients with MAS, and 30 apparently healthy volunteers (HVs). The relative distribution and percentage of T-cell subsets expressing CD39 and CD73 were evaluated by flow cytometry. T helper (Th) and cytotoxic T-cell subsets (Tcyt) were identified by using CD3, CD4, and CD8 antibodies. Regulatory T cells (Tregs) were characterized by the expression of CD3, CD4, and high IL-2R alpha chain (CD25high) levels. CD45R0 and CD62L were used to assess differentiation stage of Th, Tcyt, and Treg subsets. It was found that MAS and SAS patients differed in terms of relative distribution of Tcyt and absolute number of Treg. Moreover, the absolute number of Tcyt and terminally differentiated CD45RA-positive effector T-cells (TEMRA) subset was significantly higher in SAS vs. MAS patients and HVs. However, the absolute and relative number of naïve Th and the absolute number of Treg were significantly higher in MAS vs. SAS patients; the relative number of naïve Tregs was significantly ( p < 0.01) decreased in SAS patients. It was shown that CD73 expression was significantly higher in SAS vs. MAS patients noted in all EM, CM, TEMRA, and naïve Th cell subsets. However, only the latter were significantly increased ( p = 0.003) in patients compared with HVs. SAS vs. MAS patients were noted to have significantly higher percentage of CD73+ EM Tcyt ( p = 0.006) and CD73+ CM Tcyt ( p = 0.002). The expression of CD73 in patients significantly differed in all three Treg populations such as EM ( p = 0.049), CM ( p = 0.044), and naïve ( p < 0.001). No significant differences in CD39 expression level was found in MAS and SAS patients compared with the HV group. Overall, the data obtained demonstrated that purinergic signaling was involved in the pathogenesis of aortic stenosis and calcification potentially acting via various cell types, wherein among enzymes, degrading extracellular ATP CD73 rather than CD39 played a prominent role.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Extracellular adenosine triphosphate and adenosine in cancer.

          Adenosine triphosphate (ATP) is actively released in the extracellular environment in response to tissue damage and cellular stress. Through the activation of P2X and P2Y receptors, extracellular ATP enhances tissue repair, promotes the recruitment of immune phagocytes and dendritic cells, and acts as a co-activator of NLR family, pyrin domain-containing 3 (NLRP3) inflammasomes. The conversion of extracellular ATP to adenosine, in contrast, essentially through the enzymatic activity of the ecto-nucleotidases CD39 and CD73, acts as a negative-feedback mechanism to prevent excessive immune responses. Here we review the effects of extracellular ATP and adenosine on tumorigenesis. First, we summarize the functions of extracellular ATP and adenosine in the context of tumor immunity. Second, we present an overview of the immunosuppressive and pro-angiogenic effects of extracellular adenosine. Third, we present experimental evidence that extracellular ATP and adenosine receptors are expressed by tumor cells and enhance tumor growth. Finally, we discuss recent studies, including our own work, which suggest that therapeutic approaches that promote ATP-mediated activation of inflammasomes, or inhibit the accumulation of tumor-derived extracellular adenosine, may constitute effective new means to induce anticancer activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heterogeneity of Human CD4(+) T Cells Against Microbes.

            CD4(+) T helper (Th) cells play a central role in the adaptive immune response by providing help to B cells and cytotoxic T cells and by releasing different types of cytokines in tissues to mediate protection against a wide range of pathogenic microorganisms. These functions are performed by different types of Th cells endowed with distinct migratory capacities and effector functions. Here we discuss how studies of the human T cell response to microbes have advanced our understanding of Th cell functional heterogeneity, in particular with the discovery of a distinct Th1 subset involved in the response to Mycobacteria and the characterization of two types of Th17 cells specific for extracellular bacteria or fungi. We also review new approaches to dissect at the clonal level the human CD4(+) T cell response induced by pathogens or vaccines that have revealed an unexpected degree of intraclonal diversification and propose a progressive and selective model of CD4(+) T cell differentiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adenosine promotes alternative macrophage activation via A2A and A2B receptors.

              Adenosine has been implicated in suppressing the proinflammatory responses of classically activated macrophages induced by Th1 cytokines. Alternative macrophage activation is induced by the Th2 cytokines interleukin (IL)-4 and IL-13; however, the role of adenosine in governing alternative macrophage activation is unknown. We show here that adenosine treatment of IL-4- or IL-13-activated macrophages augments the expression of alternative macrophage markers arginase-1, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), and macrophage galactose-type C-type lectin-1. The stimulatory effect of adenosine required primarily A(2B) receptors because the nonselective adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased both arginase activity (EC(50)=261.8 nM) and TIMP-1 production (EC(50)=80.67 nM), and both pharmacologic and genetic blockade of A(2B) receptors prevented the effect of NECA. A(2A) receptors also contributed to the adenosine augmentation of IL-4-induced TIMP-1 release, as both adenosine and NECA were less efficacious in augmenting TIMP-1 release by A(2A) receptor-deficient than control macrophages. Of the transcription factors known to drive alternative macrophage activation, CCAAT-enhancer-binding protein β was required, while cAMP response element-binding protein and signal transducer and activator of transcription 6 were dispensable in mediating the effect of adenosine. We propose that adenosine receptor activation suppresses inflammation and promotes tissue restitution, in part, by promoting alternative macrophage activation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                25 July 2019
                2019
                : 10
                : 604
                Affiliations
                [1] 1Institution of Experimental Medicine , St. Petersburg, Russia
                [2] 2Far Eastern Federal University , Vladivostok, Russia
                [3] 3Almazov National Medical Research Centre , St. Petersburg, Russia
                [4] 4Pavlov First Saint Petersburg State Medical University , St. Petersburg, Russia
                Author notes

                Edited by: Simone Pacini, University of Pisa, Italy

                Reviewed by: Laura Iop, University of Padova, Italy; Paola Rizzo, University of Ferrara, Italy

                *Correspondence: Alexey Golovkin, Golovkin_a@ 123456mail.ru

                This article was submitted to Stem Cell Research, a section of the journal Frontiers in Genetics

                Article
                10.3389/fgene.2019.00604
                6669234
                3fc7e650-e082-46dc-9374-c358411d02db
                Copyright © 2019 Kudryavtsev, Serebriakova, Zhiduleva, Murtazalieva, Titov, Malashicheva, Shishkova, Semenova, Irtyuga, Isakov, Mitrofanova, Moiseeva and Golovkin

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 December 2018
                : 07 June 2019
                Page count
                Figures: 6, Tables: 4, Equations: 0, References: 57, Pages: 14, Words: 7421
                Funding
                Funded by: Russian Foundation for Basic Research 10.13039/501100002261
                Funded by: Russian Foundation for Basic Research 10.13039/501100002261
                Funded by: Russian Science Foundation 10.13039/501100006769
                Categories
                Genetics
                Original Research

                Genetics
                calcified aortic stenosis,t-cells (or lymphocytes),purinergic signaling,calcification,cd39 and cd73 expression

                Comments

                Comment on this article