14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The vbs genes that direct synthesis of the siderophore vicibactin in Rhizobium leguminosarum: their expression in other genera requires ECF sigma factor RpoI.

      Molecular Microbiology
      Bacterial Proteins, genetics, metabolism, Base Sequence, Genes, Bacterial, Iron, Molecular Sequence Data, Molecular Structure, Multigene Family, Mutation, Peptides, Cyclic, biosynthesis, Recombinant Fusion Proteins, Rhizobium leguminosarum, Sigma Factor

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A cluster of eight genes, vbsGSO, vbsADL, vbsC and vbsP, are involved in the synthesis of vicibactin, a cyclic, trihydroxamate siderophore made by the symbiotic bacterium Rhizobium leguminosarum. None of these vbs genes was required for symbiotic N2 fixation on peas or Vicia. Transcription of vbsC, vbsGSO and vbsADL (but not vbsP) was enhanced by growth in low levels of Fe. Transcription of vbsGSO and vbsADL, but not vbsP or vbsC, required the closely linked gene rpoI, which encodes an ECF sigma factor of RNA polymerase. Transfer of the cloned vbs genes, plus rpoI, to Rhodobacter, Paracoccus and Sinorhizobium conferred the ability to make vicibactin on these other genera. We present a biochemical genetic model of vicibactin synthesis, which accommodates the phenotypes of different vbs mutants and the homologies of the vbs gene products. In this model, VbsS, which is similar to many non-ribosomal peptide synthetase multienzymes, has a central role. It is proposed that VbsS activates L-N5-hydroxyornithine via covalent attachment as an acyl thioester to a peptidyl carrier protein domain. Subsequent VbsA-catalysed acylation of the hydroxyornithine, followed by VbsL-mediated epimerization and acetylation catalysed by VbsC, yields the vicibactin subunit, which is then trimerized and cyclized by the thioesterase domain of VbsS to give the completed siderophore.

          Related collections

          Author and article information

          Comments

          Comment on this article