97
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From seeing to believing: labelling strategies for in vivo cell-tracking experiments

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intravital microscopy has become increasingly popular over the past few decades because it provides high-resolution and real-time information about complex biological processes. Technological advances that allow deeper penetration in live tissues, such as the development of confocal and two-photon microscopy, together with the generation of ever-new fluorophores that facilitate bright labelling of cells and tissue components have made imaging of vertebrate model organisms efficient and highly informative. Genetic manipulation leading to expression of fluorescent proteins is undoubtedly the labelling method of choice and has been used to visualize several cell types in vivo. This approach, however, can be technically challenging and time consuming. Over the years, several dyes have been developed to allow rapid, effective and bright ex vivo labelling of cells for subsequent transplantation and imaging. Here, we review and discuss the advantages and limitations of a number of strategies commonly used to label and track cells at high resolution in vivo in mouse and zebrafish, using fluorescence microscopy. While the quest for the perfect label is far from achieved, current reagents are valuable tools enabling the progress of biological discovery, so long as they are selected and used appropriately.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish.

          Macrophages and neutrophils play important roles during the innate immune response, phagocytosing invading microbes and delivering antimicrobial compounds to the site of injury. Functional analyses of the cellular innate immune response in zebrafish infection/inflammation models have been aided by transgenic lines with fluorophore-marked neutrophils. However, it has not been possible to study macrophage behaviors and neutrophil/macrophage interactions in vivo directly because there has been no macrophage-only reporter line. To remove this roadblock, a macrophage-specific marker was identified (mpeg1) and its promoter used in mpeg1-driven transgenes. mpeg1-driven transgenes are expressed in macrophage-lineage cells that do not express neutrophil-marking transgenes. Using these lines, the different dynamic behaviors of neutrophils and macrophages after wounding were compared side-by-side in compound transgenics. Macrophage/neutrophil interactions, such as phagocytosis of senescent neutrophils, were readily observed in real time. These zebrafish transgenes provide a new resource that will contribute to the fields of inflammation, infection, and leukocyte biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation.

            Multicolor nonlinear microscopy of living tissue using two- and three-photon-excited intrinsic fluorescence combined with second harmonic generation by supermolecular structures produces images with the resolution and detail of standard histology without the use of exogenous stains. Imaging of intrinsic indicators within tissue, such as nicotinamide adenine dinucleotide, retinol, indoleamines, and collagen provides crucial information for physiology and pathology. The efficient application of multiphoton microscopy to intrinsic imaging requires knowledge of the nonlinear optical properties of specific cell and tissue components. Here we compile and demonstrate applications involving a range of intrinsic molecules and molecular assemblies that enable direct visualization of tissue morphology, cell metabolism, and disease states such as Alzheimer's disease and cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bright and stable near infra-red fluorescent protein for in vivo imaging

              The ability of non-invasive monitoring of deep-tissue developmental, metabolic, and pathogenic processes will advance modern biotechnology. Imaging of live mammals using fluorescent probes is more feasible within a “near-infrared optical window” (NIRW) 1 . Here we report a phytochrome-based near infra-red fluorescent protein (iRFP) with the excitation/emission maxima at 690/713 nm. Bright fluorescence in a living mouse proved iRFP to be a superior probe for non-invasive imaging of internal mammalian tissues. Its high intracellular stability, low cytotoxicity, and lack of the requirement to add external biliverdin-chromophore makes iRFP as easy to use as conventional GFP-like proteins. Compared to earlier phytochrome-derived fluorescent probes, the iRFP protein has better in vitro characteristics and performs well in cells and in vivo, having greater effective brightness and photostability. Compared to the far-red GFP-like proteins, iRFP has substantially higher signal to background ratio in a mouse model owing to its infra-red shifted spectra.
                Bookmark

                Author and article information

                Journal
                Interface Focus
                Interface Focus
                RSFS
                royfocus
                Interface Focus
                The Royal Society
                2042-8898
                2042-8901
                6 June 2013
                6 June 2013
                : 3
                : 3 , Theme Issue 'Molecular-, nano- and micro-devices for real-time in vivo sensing' organized and edited by Weian Zhao
                : 20130001
                Affiliations
                Department of Life Sciences, Imperial College London , London SW7 2AZ, UK
                Author notes
                Article
                rsfs20130001
                10.1098/rsfs.2013.0001
                3638420
                23853708
                4118748a-a6cc-4332-a224-ab1f16bc671f

                © 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.

                History
                Categories
                1004
                15
                Articles
                Review Article
                Custom metadata
                June 6, 2013

                Life sciences
                cell biology,in vivo imaging,cancer,stem cells,fluorescence microscopy
                Life sciences
                cell biology, in vivo imaging, cancer, stem cells, fluorescence microscopy

                Comments

                Comment on this article