Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generation of Recombinant Polioviruses Harboring RNA Affinity Tags in the 5′ and 3′ Noncoding Regions of Genomic RNAs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite being intensely studied for more than 50 years, a complete understanding of the enterovirus replication cycle remains elusive. Specifically, only a handful of cellular proteins have been shown to be involved in the RNA replication cycle of these viruses. In an effort to isolate and identify additional cellular proteins that function in enteroviral RNA replication, we have generated multiple recombinant polioviruses containing RNA affinity tags within the 3′ or 5′ noncoding region of the genome. These recombinant viruses retained RNA affinity sequences within the genome while remaining viable and infectious over multiple passages in cell culture. Further characterization of these viruses demonstrated that viral protein production and growth kinetics were unchanged or only slightly altered relative to wild type poliovirus. However, attempts to isolate these genetically-tagged viral genomes from infected cells have been hindered by high levels of co-purification of nonspecific proteins and the limited matrix-binding efficiency of RNA affinity sequences. Regardless, these recombinant viruses represent a step toward more thorough characterization of enterovirus ribonucleoprotein complexes involved in RNA replication.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Switching from repression to activation: microRNAs can up-regulate translation.

          AU-rich elements (AREs) and microRNA target sites are conserved sequences in messenger RNA (mRNA) 3' untranslated regions (3'UTRs) that control gene expression posttranscriptionally. Upon cell cycle arrest, the ARE in tumor necrosis factor-alpha (TNFalpha) mRNA is transformed into a translation activation signal, recruiting Argonaute (AGO) and fragile X mental retardation-related protein 1 (FXR1), factors associated with micro-ribonucleoproteins (microRNPs). We show that human microRNA miR369-3 directs association of these proteins with the AREs to activate translation. Furthermore, we document that two well-studied microRNAs-Let-7 and the synthetic microRNA miRcxcr4-likewise induce translation up-regulation of target mRNAs on cell cycle arrest, yet they repress translation in proliferating cells. Thus, activation is a common function of microRNPs on cell cycle arrest. We propose that translation regulation by microRNPs oscillates between repression and activation during the cell cycle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Three-dimensional structure of poliovirus at 2.9 A resolution.

            The three-dimensional structure of poliovirus has been determined at 2.9 A resolution by x-ray crystallographic methods. Each of the three major capsid proteins (VP1, VP2, and VP3) contains a "core" consisting of an eight-stranded antiparallel beta barrel with two flanking helices. The arrangement of beta strands and helices is structurally similar and topologically identical to the folding pattern of the capsid proteins of several icosahedral plant viruses. In each of the major capsid proteins, the "connecting loops" and NH2- and COOH-terminal extensions are structurally dissimilar. The packing of the subunit "cores" to form the virion shell is reminiscent of the packing in the T = 3 plant viruses, but is significantly different in detail. Differences in the orientations of the subunits cause dissimilar contacts at protein-protein interfaces, and are also responsible for two major surface features of the poliovirion: prominent peaks at the fivefold and threefold axes of the particle. The positions and interactions of the NH2- and COOH-terminal strands of the capsid proteins have important implications for virion assembly. Several of the "connecting loops" and COOH-terminal strands form prominent radial projections which are the antigenic sites of the virion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reversible cross-linking combined with immunoprecipitation to study RNA-protein interactions in vivo.

              Protein-RNA interactions play indispensable structural, catalytic, and regulatory roles within the cell. Understanding their physical association in vivo provides valuable insight into their assembly, function, and regulation in the cellular milieu. Inspired by the chromatin immunoprecipitation assay, we have developed a ribonucleoprotein (RNP) immunoprecipitation assay to study RNA-protein interactions in vivo. This method takes advantage of the highly reactive, reversible crosslinker formaldehyde, combined with high-stringency immunoprecipitation to identify specific RNAs associated with a given protein. The RNP immunoprecipitation (RIP) assay was developed using RNA-protein interactions of hepatitis delta virus (HDV) as a model system. HDV is an RNA virus with a single-stranded circular RNA genome that encodes one viral protein, hepatitis delta antigen (HDAg). The high affinity of HDAg for the HDV RNA genome, combined with the well-characterized anti-HDAg antibodies, made this system a logical starting point for the development of the RIP assay. Cells with replicating HDV were crosslinked with formaldehyde and the HDV RNPs were immunoprecipitated using anti-HDAg antibodies. The crosslinks were then reversed by heat treatment, and the immunoprecipitated HDV RNAs were identified by reverse transcription polymerase chain reaction (RT-PCR). The specificity of this assay was tested using HDV mutants and heterologous antibodies for immunoprecipiation followed by RT-PCR with HDV-specific primers. This experiment showed no nonspecific immunoprecipitation of the HDV RNPs. The method was tested further using protein-RNA interactions known to exist in the U1 snRNP. The results indicate that the RIP assay is a powerful tool to identify RNA-protein interactions in vivo and has the potential to unravel the cellular network of RNP complexes in their native setting. (c) 2002 Elsevier Science (USA).
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                04 February 2016
                February 2016
                : 8
                : 2
                : 39
                Affiliations
                [1 ]Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA; dflather@ 123456uci.edu (D.F.); andrea.cathcart@ 123456gilead.com (A.L.C.); cruzc3@ 123456uci.edu (C.C.); ebaggs@ 123456uci.edu (E.B.)
                [2 ]Present address: Gilead Sciences, Inc., Foster City, CA 94404, USA
                [3 ]Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA; tngo5@ 123456uci.edu (T.N.); pgershon@ 123456uci.edu (P.D.G.)
                Author notes
                [* ]Correspondence: blsemler@ 123456uci.edu ; Tel.: +1-949-824-7573; Fax: +1-949-824-2694
                Article
                viruses-08-00039
                10.3390/v8020039
                4776194
                26861382
                413aecb3-327f-46d8-80d0-3b91d6611b4f
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 November 2015
                : 21 January 2016
                Categories
                Article

                Microbiology & Virology
                enterovirus rna replication,rna replication complexes,ms2 hairpin,aptamer,ribonucleoprotein complexes,rnp isolation,rna affinity

                Comments

                Comment on this article