1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Alpha Frequency Intervention by Electrical Stimulation to Improve Performance in Mu-Based BCI.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The accuracy of brain-computer interfaces (BCIs) is important for effective communication and control. The mu-based BCI is one of the most widely used systems, of which the related methods to improve users' accuracy are still poorly studied, especially for the BCI illiteracy. Here, we examined a way to enhance mu-based BCI performance by electrically stimulating the ulnar nerve of the contralateral wrist at the alpha frequency (10 Hz) during left- and right-hand motor imagination in two BCI groups (literate and illiterate). We demonstrate that this alpha frequency intervention enhances the classification accuracy between left- and right-hand motor imagery from 66.41% to 81.57% immediately after intervention and to 75.28% two days after intervention in the BCI illiteracy group, while classification accuracy improves from 82.12% to 91.84% immediately after intervention and to 89.03% two days after intervention in the BCI literacy group. However, the classification accuracy did not change before and after the sham intervention (no electrical stimulation). Furthermore, the ERD on the primary sensorimotor cortex during left- or right-hand motor imagery tasks was more visible at the mu-rhythm (8-13 Hz) after alpha frequency intervention. Alpha frequency intervention increases the mu-rhythm power difference between left- and right-hand motor imagery tasks. These results provide evidence that alpha frequency intervention is an effective way to improve BCI performance by regulating the mu-rhythm which might provide a way to reduce BCI illiteracy.

          Related collections

          Author and article information

          Journal
          IEEE Trans Neural Syst Rehabil Eng
          IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
          Institute of Electrical and Electronics Engineers (IEEE)
          1558-0210
          1534-4320
          June 2020
          : 28
          : 6
          Article
          10.1109/TNSRE.2020.2987529
          32305926
          416836aa-0580-4bae-a148-f704aed115c7
          History

          Comments

          Comment on this article