28
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HIV Replication at Low Copy Number and its Correlation with the HIV Reservoir: A Clinical Perspective

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The efficacy of combination therapy (antiretroviral therapy - ARV) is demonstrated by the high rates of viral suppression achieved in most treated HIV patients. Whereas contemporary treatments may continuously suppress HIV replication, they do not eliminate the latent reservoir, which can reactivate HIV infection if ARV is discontinued. The persistence of HIV proviral DNA and infectious viruses in CD4+ T cells and others cells has long been considered a major obstacle in eradicating the HIV virus in treated patients. Moreover, recent studies have demonstrated the persistence of HIV replication at low copies in most patients on suppressive ARV. The source of this ‘residual viraemia’ and whether it declines over years of therapy remain unknown. Similarly, little is known regarding the biological relationships between the HIV reservoir and viral replication at low copies. The question of whether this ‘residual viraemia’ represents active replication or the release of non-productive virus from the reservoir has not been adequately resolved.

          From a clinical perspective, both the quantification of the HIV reservoir and the detection of low levels of replication in full-responder patients on prolonged ARV may provide important information regarding the effectiveness of treatment and the eradication of HIV. To date, the monitoring of these two parameters has been conducted only for research purposes; the routine use of standardised tests procedure is lacking. This review aims to assess the current data regarding the correlation between HIV replication at low copies and the HIV reservoir and to provide useful information for clinicians.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection.

          The capacity of HIV-1 to establish latent infection of CD4+ T cells may allow viral persistence despite immune responses and antiretroviral therapy. Measurements of infectious virus and viral RNA in plasma and of infectious virus, viral DNA and viral messenger RNA species in infected cells all suggest that HIV-1 replication continues throughout the course of infection. Uncertainty remains over what fraction of CD4+ T cells are infected and whether there are latent reservoirs for the virus. We show here that during the asymptomatic phase of infection there is an extremely low total body load of latently infected resting CD4+ T cells with replication-competent integrated provirus (<10(7) cells). The most prevalent form of HIV-1 DNA in resting and activated CD4+ T cells is a full-length, linear, unintegrated form that is not replication competent. The infection progresses even though at any given time in the lymphoid tissues integrated HIV-1 DNA is present in only a minute fraction of the susceptible populations, including resting and activated CD4+ T cells and macrophages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency.

            Although it is presumed that the integration of HIV-1 into the genome of infected CD4+ T lymphocytes allows viral persistence, there has been little direct evidence that CD4+ T cells with integrated provirus function as a latent reservoir for HIV-1 in infected individuals. Using resting CD4+ T-cell populations of extremely high purity and a novel assay that selectively and unambiguously detects integrated HIV-1, we show that resting CD4+ T cells harbouring integrated provirus are present in some infected individuals. However, these cells do not accumulate within the circulating pool of resting CD4+ T cells in the early stages of HIV-1 infection and do not accumulate even after prolonged periods in long-term survivors of HIV-1 infection. These results suggest that because of viral cytopathic effects and/or host effector mechanisms, productively infected CD4+ T cells do not generally survive for long enough to revert to a resting memory state in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy.

              Human immunodeficiency virus (HIV) persists in peripheral blood mononuclear cells despite sustained, undetectable plasma viremia resulting from long-term antiretroviral therapy. However, the source of persistent HIV in such infected individuals remains unclear. Given recent data suggesting high levels of viral replication and profound depletion of CD4(+) T cells in gut-associated lymphoid tissue (GALT) of animals infected with simian immunodeficiency virus and HIV-infected humans, we sought to determine the level of CD4(+) T cell depletion as well as the degree and extent of HIV persistence in the GALT of infected individuals who had been receiving effective antiviral therapy for prolonged periods of time. We demonstrate incomplete recoveries of CD4(+) T cells in the GALT of aviremic, HIV-infected individuals who had received up to 9.9 years of effective antiretroviral therapy. In addition, we demonstrate higher frequencies of HIV infection in GALT, compared with PBMCs, in these aviremic individuals and provide evidence for cross-infection between these 2 cellular compartments. Together, these data provide a possible mechanism for the maintenance of viral reservoirs revolving around the GALT of HIV-infected individuals despite long-term viral suppression and suggest that the GALT may play a major role in the persistence of HIV in such individuals.
                Bookmark

                Author and article information

                Journal
                Curr HIV Res
                Curr. HIV Res
                CHIVR
                Current HIV Research
                Bentham Science Publishers
                1570-162X
                1873-4251
                May 2015
                May 2015
                : 13
                : 3
                : 250-257
                Affiliations
                [1 ] Clinical Infectious Diseases, Tor Vergata University, Rome, Italy;
                [2 ]Clinical Infectious Diseases, ‘La Sapienza’ University, Rome, Italy;
                [3 ] Department of Molecular Medicine, University of Padova, Padova, Italy;
                Author notes
                [* ]Address correspondence to this author at the Clinical Infectious Diseases, Tor Vergata University, V. Montpellier 1, 00133, Roma, Italy; Tel: +390620908281; Fax: +390620902811; E-mail: sarmati@ 123456med.uniroma2.it
                Article
                CHIVR-13-250
                10.2174/1570162X13666150407142539
                4460281
                25845389
                4214e8d8-1f89-41f9-9918-70fde02441ef
                ©2015 Bentham Science Publishers

                This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

                History
                : 3 October 2014
                : 27 January 2015
                : 2 April 2015
                Categories
                Article

                Infectious disease & Microbiology
                hiv drug resistance,hiv reservoir,hiv-dna,residual viraemia,virological failure

                Comments

                Comment on this article