7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estimates of the global burden of non-Hodgkin lymphoma attributable to HIV: a population attributable modeling study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          Human immunodeficiency virus (HIV) significantly increases the risk of non-Hodgkin lymphoma (NHL) development, yet the population-level impact on NHL burden is unquantified. We aim to quantify this association and estimate the global burden of HIV-associated NHL.

          Methods

          In this meta-analysis, we searched five databases (PubMed, EMBASE, Cochrane Library, Web of Science, Scopus) from database inception up to September 13, 2023, identifying cohort, case–control, or cross-sectional studies with an effective control group to assess NHL risk among individuals with HIV infection, with two authors extracting summary data from reports. Global and regional HIV-associated population attributable fraction (PAF) and NHL disease burden were calculated based on the pooled risk ratio (RR). HIV prevalence and NHL incidence were obtained from the Joint United Nations Programme on HIV/AIDS (UNAIDS) and Global Burden of Diseases, Injuries, and Risk Factors Study 2019. Trends in NHL incidence due to HIV were assessed using age-standardised incidence rate (ASIR) and estimated annual percentage change (EAPC). This study was registered with PROSPERO (CRD42023404150).

          Findings

          Out of 14,929 literature sources, 39 articles met our inclusion criteria. The risk of NHL was significantly increased in the population living with HIV (pooled RR 23.51, 95% CI 17.62–31.37; I 2 = 100%, p < 0.0001), without publication bias. Globally, 6.92% (95% CI 2.18%–11.57%) of NHL new cases in 2019 were attributable to HIV infection (30,503, 95% CI 9585–52,209), which marked a more than three-fold increase from 1990 (8340, 95% CI 3346–13,799). The UNAIDS region of Eastern and Southern Africa was the highest affected region, with 44.46% (95% CI 19.62%–58.57%) of NHL new cases attributed to HIV infection. The Eastern Europe and Central Asia region experienced the highest increase in ASIR of NHL due to HIV in the past thirty years, wherein the EAPC was 8.74% (95% CI 7.66%–9.84%), from 2010 to 2019.

          Interpretation

          People with HIV infection face a significantly increased risk of NHL. Targeted prevention and control policies are especially crucial for countries in Eastern and Southern Africa, Eastern Europe and Central Asia, to achieve the UNAIDS's ‘90-90-90’ Fast-Track targets. Limited studies across diverse regions and heterogeneity between research have hindered precise estimations for specific periods and regions.

          Funding

          Sichuan Provincial People’s Hospital, Chengdu, China; Health Care for Cadres of Sichuan Province, Chengdu, China; doi 10.13039/501100004829, Science and Technology Department of Sichuan Province, Chengdu, China.;

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The PRISMA 2020 statement: an updated guideline for reporting systematic reviews

            The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, published in 2009, was designed to help systematic reviewers transparently report why the review was done, what the authors did, and what they found. Over the past decade, advances in systematic review methodology and terminology have necessitated an update to the guideline. The PRISMA 2020 statement replaces the 2009 statement and includes new reporting guidance that reflects advances in methods to identify, select, appraise, and synthesise studies. The structure and presentation of the items have been modified to facilitate implementation. In this article, we present the PRISMA 2020 27-item checklist, an expanded checklist that details reporting recommendations for each item, the PRISMA 2020 abstract checklist, and the revised flow diagrams for original and updated reviews.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

              Summary Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding Bill & Melinda Gates Foundation.
                Bookmark

                Author and article information

                Contributors
                Journal
                eClinicalMedicine
                EClinicalMedicine
                eClinicalMedicine
                Elsevier
                2589-5370
                16 December 2023
                January 2024
                16 December 2023
                : 67
                : 102370
                Affiliations
                [a ]Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
                [b ]School of Public Health, Southwest Medical University, Luzhou, China
                [c ]Department of School of Public Health, Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, China
                [d ]National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory of Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumour Institute, Beijing, China
                [e ]Chinese Evidence-based Medicine Centre, West China Hospital, Sichuan University, Chengdu, China
                Author notes
                []Corresponding author. Zhejiang University School of Medicine, 866 YuhangTang Rd, Xihu Dist., Hangzhou, 310058, China. xueli157@ 123456zju.edu.cn
                [∗∗ ]Corresponding author. No. 32 West Second Section, First Ring Rd., Qingyang Dist., Chengdu, 610000, China. 18981838972@ 123456163.com
                [∗∗∗ ]Corresponding author. No. 32 West Second Section, First Ring Rd., Qingyang Dist., Chengdu, 610000, China. 18715799366@ 123456163.com
                [f]

                These authors contributed equally and share first authorship.

                Article
                S2589-5370(23)00547-3 102370
                10.1016/j.eclinm.2023.102370
                10733638
                38130708
                422b2826-d252-4bdb-996c-fd18ecf5633a
                © 2023 The Author(s)

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 22 August 2023
                : 24 November 2023
                : 28 November 2023
                Categories
                Articles

                hiv,non-hodgkin lymphoma,risk ratio,population attributable fraction,global burden

                Comments

                Comment on this article