0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimization of Gefitinib-Loaded Nanostructured Lipid Carrier as a Biomedical Tool in the Treatment of Metastatic Lung Cancer

      , , , ,
      Molecules
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gefitinib (GEF) is utilized in clinical settings for the treatment of metastatic lung cancer. However, premature drug release from nanoparticles in vivo increases the exposure of systemic organs to GEF. Herein, nanostructured lipid carriers (NLC) were utilized not only to avoid premature drug release but also due to their inherent lymphatic tropism. Therefore, the present study aimed to develop a GEF-NLC as a lymphatic drug delivery system with low drug release. Design of experiments was utilized to develop a stable GEF-NLC as a lymphatic drug delivery system for the treatment of metastatic lung cancer. The in vitro drug release of GEF from the prepared GEF-NLC formulations was studied to select the optimum formulation. MTT assay was utilized to study the cytotoxic activity of GEF-NLC compared to free GEF. The optimized GEF-NLC formulation showed favorable physicochemical properties: <300 nm PS, <0.2 PDI, <−20 ZP values with >90% entrapment efficiency. Interestingly, the prepared formulation was able to retain GEF with only ≈57% drug release within 24 h. Furthermore, GEF-NLC reduced the sudden exposure of cultured cells to GEF and produced the required cytotoxic effect after 48 and 72 h incubation time. Consequently, optimized formulation offers a promising approach to improve GEF’s therapeutic outcomes with reduced systemic toxicity in treating metastatic lung cancer.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs?

          In recent years, solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are among the popular research topics for the delivery of lipophilic drugs. Although SLNs have demonstrated several beneficial properties as drug-carrier, limited drug-loading and expulsion of drug during storage led to the development of NLCs. However, the superiority of NLCs over SLNs has not been fully established yet due to the contradictory results. In this study, SLNs and NLCs were developed using clotrimazole as model drug. Size, polydispersity index (PI), zeta potential (ZP), drug-loading (L), drug encapsulation efficiency (EE), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), drug release and stability of SLNs and NLCs were compared. Critical process parameters exhibited significant impact on the nanoparticles' properties. Size, PI, ZP and EE of the developed SLNs and NLCs were 82%, respectively. SEM images of SLNs and NLCs revealed spherical shaped particles (≈ 100 nm). DSC and XRD studies indicated slight difference between SLNs and NLCs as well as disappearance of the crystalline peak(s) of the encapsulated drug. NLCs demonstrated faster drug release than SLNs at low drug-loading, whereas there was no significant difference in drug release from SLNs and NLCs at high drug-loading. However, sustained/prolonged drug release was observed from both formulations. Furthermore, this study suggests that the drug release experiment should be designed considering the final application (topical/oral/parenteral) of the product. Regarding stability, NLCs showed better stability (in terms of size, PI, EE and L) than SLNs at 25°C. Moreover, there was no significant difference in drug release profile of NLCs after 3 months storage in compare to fresh NLCs, while significant change in drug release rate was observed in case of SLNs. Therefore, NLCs have an edge over SLNs. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Surface modification of solid lipid nanoparticles for oral delivery of curcumin: Improvement of bioavailability through enhanced cellular uptake, and lymphatic uptake.

            Curcumin has been reported to exhibit potent anticancer effects. However, poor solubility, bioavailability and stability of curcumin limit its in vivo efficacy for the cancer treatment. Solid lipid nanoparticles (SLN) are a promising delivery system for the enhancement of bioavailability of hydrophobic drugs. However, burst release of drug from SLN in acidic environment limits its usage as oral delivery system. Hence, we prepared N-carboxymethyl chitosan (NCC) coated curcumin-loaded SLN (NCC-SLN) to inhibit the rapid release of curcumin in acidic environment and enhance the bioavailability. The NCC-SLN exhibited suppressed burst release in simulated gastric fluid while sustained release was observed in simulated intestinal fluid. Furthermore, NCC-SLN exhibited increased cytotoxicity and cellular uptake on MCF-7 cells. The lymphatic uptake and oral bioavailability of NCC-SLN were found to be 6.3-fold and 9.5-fold higher than that of curcumin solution, respectively. These results suggest that NCC-SLN could be an efficient oral delivery system for curcumin.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Lipid-based nanoparticle technologies for liver targeting

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MOLEFW
                Molecules
                Molecules
                MDPI AG
                1420-3049
                January 2023
                January 03 2023
                : 28
                : 1
                : 448
                Article
                10.3390/molecules28010448
                4250b1a8-57da-4262-b074-9eb77d2941aa
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article