2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Formulation, In Vitro and In Vivo Evaluation of Gefitinib Solid Dispersions Prepared Using Different Techniques

      , , , , , , ,
      Processes
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gefitinib (Gef) is a poorly water-soluble antitumor drug, which shows poor absorption/bioavailability after oral administration. Therefore, this study was carried out to develop Gef solid dispersions (SDs) using different carriers and different techniques in order to enhance its dissolution and oral absorption/bioavailability. Various SD formulations of Gef were established using fusion and microwave methods utilizing Soluplus, Kollidone VA64, and polyethylene glycol 4000 (PEG 4000) as the carriers. Developed SDs of Gef were characterized physicochemically and evaluated for in vitro dissolution and in vivo pharmacokinetic studies. The physicochemical evaluation revealed the formation of Gef SDs using fusion and microwave methods. In vitro dissolution studies indicated significant release of Gef from all SDs compared to the pure Gef. Optimized SD of Gef (S2-MW) presented significant release of Gef (82.10%) compared with pure Gef (21.23%). The optimized Gef SD (S2) was subjected to in vivo pharmacokinetic evaluation in comparison with pure Gef in rats. The results indicated significant enhancement in various pharmacokinetic parameters of Gef from an optimized SD S2 compared to the pure Gef. In addition, Gef-SD S2 resulted in remarkable improvement in bioavailability compared to the pure Gef. Overall, this study suggested that the prepared Gef-SD by microwave method showed marked enhancement in dissolution and bioavailability.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Kinase-targeted cancer therapies: progress, challenges and future directions

            The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are associated with human cancer initiation and progression. The recent development of small-molecule kinase inhibitors for the treatment of diverse types of cancer has proven successful in clinical therapy. Significantly, protein kinases are the second most targeted group of drug targets, after the G-protein-coupled receptors. Since the development of the first protein kinase inhibitor, in the early 1980s, 37 kinase inhibitors have received FDA approval for treatment of malignancies such as breast and lung cancer. Furthermore, about 150 kinase-targeted drugs are in clinical phase trials, and many kinase-specific inhibitors are in the preclinical stage of drug development. Nevertheless, many factors confound the clinical efficacy of these molecules. Specific tumor genetics, tumor microenvironment, drug resistance, and pharmacogenomics determine how useful a compound will be in the treatment of a given cancer. This review provides an overview of kinase-targeted drug discovery and development in relation to oncology and highlights the challenges and future potential for kinase-targeted cancer therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs.

              Solid dispersions are one of the most promising strategies to improve the oral bioavailability of poorly water soluble drugs. By reducing drug particle size to the absolute minimum, and hence improving drug wettability, bioavailability may be significantly improved. They are usually presented as amorphous products, mainly obtained by two major different methods, for example, melting and solvent evaporation. Recently, surfactants have been included to stabilize the formulations, thus avoiding drug recrystallization and potentiating their solubility. New manufacturing processes to obtain solid dispersions have also been developed to reduce the drawbacks of the initial process. In this review, it is intended to discuss the recent advances related on the area of solid dispersions.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                PROCCO
                Processes
                Processes
                MDPI AG
                2227-9717
                July 2021
                July 14 2021
                : 9
                : 7
                : 1210
                Article
                10.3390/pr9071210
                fae12da9-5590-49ad-8c53-319bef9e1f60
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article