2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Early natural menopause is associated with poor lung health and increased mortality among female smokers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Reduced lung-cancer mortality with low-dose computed tomographic screening.

          (2011)
          The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer. From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02). Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Screening for Lung Cancer: US Preventive Services Task Force Recommendation Statement

            Lung cancer is the second most common cancer and the leading cause of cancer death in the US. In 2020, an estimated 228 820 persons were diagnosed with lung cancer, and 135 720 persons died of the disease. The most important risk factor for lung cancer is smoking. Increasing age is also a risk factor for lung cancer. Lung cancer has a generally poor prognosis, with an overall 5-year survival rate of 20.5%. However, early-stage lung cancer has a better prognosis and is more amenable to treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ovarian aging: mechanisms and clinical consequences.

              Menopause is the final step in the process referred to as ovarian ageing. The age related decrease in follicle numbers dictates the onset of cycle irregularity and the final cessation of menses. The parallel decay in oocyte quality contributes to the gradual decline in fertility and the final occurrence of natural sterility. Endocrine changes mainly relate to the decline in the negative feedback from ovarian factors at the hypothalamo-pituitary unit. The declining cohort of antral follicles with age first results in gradually elevated FSH levels, followed by subsequent stages of overt cycle irregularity. The gradual decline in the size of the antral follicle cohort is best represented by decreasing levels of anti-Mullerian hormone. The variability of ovarian ageing among women is evident from the large variation in age at menopause. The identification of women who have severely decreased ovarian reserve for their age is clinically relevant. Ovarian reserve tests have appeared to be fairly accurate in predicting response to ovarian stimulation in the assisted reproductive technology (ART) setting. The capacity to predict the chances for spontaneous pregnancy or pregnancy after ART appears very limited. As menopause and the preceding decline in oocyte quality seem to have a fixed time interval, tests that predict the age at menopause may be useful to assess individual reproductive lifespan. Especially genetic studies, both addressing candidate gene and genome wide association, have identified several interesting loci of small genetic variation that may determine fetal follicle pool development and subsequent wastage of his pool over time. Improved knowledge of the ovarian ageing mechanisms may ultimately provide tools for prediction of menopause and manipulation of the early steps of folliculogenesis for the purpose of contraception and fertility lifespan extension.
                Bookmark

                Author and article information

                Journal
                American Journal of Obstetrics and Gynecology
                American Journal of Obstetrics and Gynecology
                Elsevier BV
                00029378
                December 2022
                December 2022
                : 227
                : 6
                : 885.e1-885.e12
                Article
                10.1016/j.ajog.2022.07.031
                42757c73-a741-4b69-97d1-ad11d96b9f94
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article