10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Programming Bacteria With Light—Sensors and Applications in Synthetic Biology

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photo-receptors are widely present in both prokaryotic and eukaryotic cells, which serves as the foundation of tuning cell behaviors with light. While practices in eukaryotic cells have been relatively established, trials in bacterial cells have only been emerging in the past few years. A number of light sensors have been engineered in bacteria cells and most of them fall into the categories of two-component and one-component systems. Such a sensor toolbox has enabled practices in controlling synthetic circuits at the level of transcription and protein activity which is a major topic in synthetic biology, according to the central dogma. Additionally, engineered light sensors and practices of tuning synthetic circuits have served as a foundation for achieving light based real-time feedback control. Here, we review programming bacteria cells with light, introducing engineered light sensors in bacteria and their applications, including tuning synthetic circuits and achieving feedback controls over microbial cell culture.

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Synthetic biology: applications come of age

          Key Points Early synthetic biology designs, namely the genetic toggle switch and repressilator, showed that regulatory components can be characterized and assembled to bring about complex, electronics-inspired behaviours in living systems (for example, memory storage and timekeeping). Through the characterization and assembly of genetic parts and biological building blocks, many more devices have been constructed, including switches, memory elements, oscillators, pulse generators, digital logic gates, filters and communication modules. Advances in the field are now allowing expansion beyond small gene networks to the realm of larger biological programs, which hold promise for a wide range of applications, including biosensing, therapeutics and the production of biofuels, pharmaceuticals and biomaterials. Synthetic biosensing circuits consist of sensitive elements that bind analytes and transducer modules that mobilize cellular responses. Balancing these two modules involves engineering modularity and specificity into the various circuits. Biosensor sensitive elements include environment-responsive promoters (transcriptional), RNA aptamers (translational) and protein receptors (post-translational). Biosensor transducer modules include engineered gene networks (transcriptional), non-coding regulatory RNAs (translational) and protein signal-transduction circuits (post-translational). The contributions of synthetic biology to therapeutics include: engineered networks and organisms for disease-mechanism elucidation, drug-target identification, drug-discovery platforms, therapeutic treatment, therapeutic delivery, and drug production and access. In the microbial production of biofuels and pharmaceuticals, synthetic biology has supplemented traditional genetic and metabolic engineering efforts by aiding the construction of optimized biosynthetic pathways. Optimizing metabolic flux through biosynthetic pathways is traditionally accomplished by driving the expression of pathway enzymes with strong, inducible promoters. New synthetic approaches include the rapid diversification of various pathway components, the rational and model-guided assembly of pathway components, and hybrid solutions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inferring genetic networks and identifying compound mode of action via expression profiling.

              The complexity of cellular gene, protein, and metabolite networks can hinder attempts to elucidate their structure and function. To address this problem, we used systematic transcriptional perturbations to construct a first-order model of regulatory interactions in a nine-gene subnetwork of the SOS pathway in Escherichia coli. The model correctly identified the major regulatory genes and the transcriptional targets of mitomycin C activity in the subnetwork. This approach, which is experimentally and computationally scalable, provides a framework for elucidating the functional properties of genetic networks and identifying molecular targets of pharmacological compounds.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                08 November 2018
                2018
                : 9
                : 2692
                Affiliations
                State Key Laboratory of Microbial Technology, Shandong University , Jinan, China
                Author notes

                Edited by: Weiwen Zhang, Tianjin University, China

                Reviewed by: Carol Sze Ki Lin, City University of Hong Kong, Hong Kong; Jiangxin Wang, Shenzhen University, China

                *Correspondence: Quanfeng Liang liangquanfeng@ 123456sdu.edu.cn

                This article was submitted to Microbiotechnology, Ecotoxicology and Bioremediation, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.02692
                6236058
                30467500
                42b34a91-a765-466e-8945-bc642b1a0bd1
                Copyright © 2018 Liu, Zhang, Jin, Geng, Qi and Liang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 July 2018
                : 22 October 2018
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 130, Pages: 11, Words: 8752
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Microbiology
                Review

                Microbiology & Virology
                light-sensors,optogenetics,genetic circuits,synthetic biology,feedback control

                Comments

                Comment on this article