31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antigen Presentation and the Ubiquitin‐Proteasome System in Host–Pathogen Interactions

      review-article
      ,
      Advances in Immunology
      Elsevier Inc.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Relatively small genomes and high replication rates allow viruses and bacteria to accumulate mutations. This continuously presents the host immune system with new challenges. On the other side of the trenches, an increasingly well‐adjusted host immune response, shaped by coevolutionary history, makes a pathogen's life a rather complicated endeavor. It is, therefore, no surprise that pathogens either escape detection or modulate the host immune response, often by redirecting normal cellular pathways to their advantage. For the purpose of this chapter, we focus mainly on the manipulation of the class I and class II major histocompatibility complex (MHC) antigen presentation pathways and the ubiquitin (Ub)‐proteasome system by both viral and bacterial pathogens. First, we describe the general features of antigen presentation pathways and the Ub‐proteasome system and then address how they are manipulated by pathogens. We discuss the many human cytomegalovirus (HCMV)‐encoded immunomodulatory genes that interfere with antigen presentation (immunoevasins) and focus on the HCMV immunoevasins US2 and US11, which induce the degradation of class I MHC heavy chains by the proteasome by catalyzing their export from the endoplasmic reticulum (ER)‐membrane into the cytosol, a process termed ER dislocation. US2‐ and US11‐mediated subversion of ER dislocation ensures proteasomal degradation of class I MHC molecules and presumably allows HCMV to avoid recognition by cytotoxic T cells, whilst providing insight into general aspects of ER‐associated degradation (ERAD) which is used by eukaryotic cells to purge their ER of defective proteins. We discuss the similarities and differences between the distinct pathways co‐opted by US2 and US11 for dislocation and degradation of human class I MHC molecules and also a putatively distinct pathway utilized by the murine herpes virus (MHV)‐68 mK3 immunoevasin for ER dislocation of murine class I MHC. We speculate on the implications of the three pathogen‐exploited dislocation pathways to cellular ER quality control. Moreover, we discuss the ubiquitin (Ub)‐proteasome system and its position at the core of antigen presentation as proteolysis and intracellular trafficking rely heavily on Ub‐dependent processes. We add a few examples of manipulation of the Ub‐proteasome system by pathogens in the context of the immune system and such diverse aspects of the host–pathogen relationship as virus budding, bacterial chromosome integration, and programmed cell death, to name a few. Finally, we speculate on newly found pathogen‐encoded deubiquitinating enzymes (DUBs) and their putative roles in modulation of host–pathogen interactions.

          Related collections

          Most cited references405

          • Record: found
          • Abstract: found
          • Article: not found

          Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.

          Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HA0; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry. Structures of HA in complex with sialic acid receptor analogs, together with binding experiments, provide details of these low-affinity interactions in terms of the sialic acid substituents recognized and the HA residues involved in recognition. Neutralizing antibody-binding sites surround the receptor-binding pocket on the membrane-distal surface of HA, and the structures of the complexes between neutralizing monoclonal Fabs and HA indicate possible neutralization mechanisms. Cleavage of the biosynthetic precursor HA0 at a prominent loop in its structure primes HA for subsequent activation of membrane fusion at endosomal pH (Figure 1). Priming involves insertion of the fusion peptide into a charged pocket in the precursor; activation requires its extrusion towards the fusion target membrane, as the N terminus of a newly formed trimeric coiled coil, and repositioning of the C-terminal membrane anchor near the fusion peptide at the same end of a rod-shaped molecule. Comparison of this new HA conformation, which has been formed for membrane fusion, with the structures determined for other virus fusion glycoproteins suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fusion mechanism. Extension of these comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion allows a similar conclusion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NK cell recognition.

            The integrated processing of signals transduced by activating and inhibitory cell surface receptors regulates NK cell effector functions. Here, I review the structure, function, and ligand specificity of the receptors responsible for NK cell recognition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A genomic and functional inventory of deubiquitinating enzymes.

              Posttranslational modification of proteins by the small molecule ubiquitin is a key regulatory event, and the enzymes catalyzing these modifications have been the focus of many studies. Deubiquitinating enzymes, which mediate the removal and processing of ubiquitin, may be functionally as important but are less well understood. Here, we present an inventory of the deubiquitinating enzymes encoded in the human genome. In addition, we review the literature concerning these enzymes, with particular emphasis on their function, specificity, and the regulation of their activity.
                Bookmark

                Author and article information

                Journal
                Adv Immunol
                Adv. Immunol
                Advances in Immunology
                Elsevier Inc.
                0065-2776
                1557-8445
                2 December 2006
                2006
                2 December 2006
                : 92
                : 225-305
                Affiliations
                Whitehead Institute, 9 Cambridge Center, Cambridge, Massachusetts
                Article
                S0065-2776(06)92006-9
                10.1016/S0065-2776(06)92006-9
                7112114
                17145306
                4377b924-fee5-4069-8aeb-4431d68e560d
                Copyright © 2006 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Comments

                Comment on this article