9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Light-emitting metasurfaces

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photonic metasurfaces, that is, two-dimensional arrangements of designed plasmonic or dielectric resonant scatterers, have been established as a successful concept for controlling light fields at the nanoscale. While the majority of research so far has concentrated on passive metasurfaces, the direct integration of nanoscale emitters into the metasurface architecture offers unique opportunities ranging from fundamental investigations of complex light-matter interactions to the creation of flat sources of tailored light fields. While the integration of emitters in metasurfaces as well as many fundamental effects occurring in such structures were initially studied in the realm of nanoplasmonics, the field has recently gained significant momentum following the development of Mie-resonant dielectric metasurfaces. Because of their low absorption losses, additional possibilities for emitter integration, and compatibility with semiconductor-based light-emitting devices, all-dielectric systems are promising for highly efficient metasurface light sources. Furthermore, a flurry of new emission phenomena are expected based on their multipolar resonant response. This review reports on the state of the art of light-emitting metasurfaces, covering both plasmonic and all-dielectric systems.

          Most cited references332

          • Record: found
          • Abstract: found
          • Article: not found

          Van der Waals heterostructures

          Research on graphene and other two-dimensional atomic crystals is intense and is likely to remain one of the leading topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first, already remarkably complex, such heterostructures (often referred to as 'van der Waals') have recently been fabricated and investigated, revealing unusual properties and new phenomena. Here we review this emerging research area and identify possible future directions. With steady improvement in fabrication techniques and using graphene's springboard, van der Waals heterostructures should develop into a large field of their own.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flat optics with designer metasurfaces.

            Conventional optical components such as lenses, waveplates and holograms rely on light propagation over distances much larger than the wavelength to shape wavefronts. In this way substantial changes of the amplitude, phase or polarization of light waves are gradually accumulated along the optical path. This Review focuses on recent developments on flat, ultrathin optical components dubbed 'metasurfaces' that produce abrupt changes over the scale of the free-space wavelength in the phase, amplitude and/or polarization of a light beam. Metasurfaces are generally created by assembling arrays of miniature, anisotropic light scatterers (that is, resonators such as optical antennas). The spacing between antennas and their dimensions are much smaller than the wavelength. As a result the metasurfaces, on account of Huygens principle, are able to mould optical wavefronts into arbitrary shapes with subwavelength resolution by introducing spatial variations in the optical response of the light scatterers. Such gradient metasurfaces go beyond the well-established technology of frequency selective surfaces made of periodic structures and are extending to new spectral regions the functionalities of conventional microwave and millimetre-wave transmit-arrays and reflect-arrays. Metasurfaces can also be created by using ultrathin films of materials with large optical losses. By using the controllable abrupt phase shifts associated with reflection or transmission of light waves at the interface between lossy materials, such metasurfaces operate like optically thin cavities that strongly modify the light spectrum. Technology opportunities in various spectral regions and their potential advantages in replacing existing optical components are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Passive radiative cooling below ambient air temperature under direct sunlight.

              Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.
                Bookmark

                Author and article information

                Journal
                Nanophotonics
                Walter de Gruyter GmbH
                2192-8614
                July 11 2019
                July 11 2019
                : 8
                : 7
                : 1151-1198
                Affiliations
                [1 ]Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Strasse 15, 07745 Jena, Germany
                [2 ]Center for Nanophotonics, AMOLF, Dutch Research Council, Science Park 104, NL-1098XG, Amsterdam, The Netherlands
                Article
                10.1515/nanoph-2019-0110
                439b9c0b-94f5-4d70-a978-536159ce81dc
                © 2019

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article