6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Triple-Band Perfect Light Absorber Based on Hybrid Metasurface for Sensing Application

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A simple design of triple-band perfect light absorber (PLA) based on hybrid metasurface in visible region has been presented in this work, which turns out to be applicable for refractive index (RI) sensing. Distinct from previous designs, the proposed hybrid metasurface for visible PLA is only consisted of periodic silicon cross nanostructure arrays and gold substrate. The periodic silicon cross arrays deposited on the gold substrate contribute to excite the guided modes under the normal incident light illumination. According to the simulation results, it can be found that three perfect absorption peaks of 98.1%, 98.7%, and 99.6% which are located at 402.5 THz, 429.5 THz, and 471.5 THz, respectively, have been clearly observed in PLA. This triple-band perfect absorption effect could be attributed to the intrinsic loss of silicon material originated from the guided mode excitations caused by the standing waves of different orders. It has been confirmed that the perfect absorption properties of the PLA can be easily regulated by changing the geometric parameters of the unit-cell nanostructure. Furthermore, the designed PLA served as a RI sensor can achieve sensitivity of about 25.3, 41.3, and 31.9 THz /refractive index unit (RIU). It can be believed that the proposed design of PLA for RI sensing would provide great potential applications in sensing, detecting, the enhanced visible spectroscopy, etc.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Biosensing with plasmonic nanosensors.

          Recent developments have greatly improved the sensitivity of optical sensors based on metal nanoparticle arrays and single nanoparticles. We introduce the localized surface plasmon resonance (LSPR) sensor and describe how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation. We then describe recent progress in three areas representing the most significant challenges: pushing sensitivity towards the single-molecule detection limit, combining LSPR with complementary molecular identification techniques such as surface-enhanced Raman spectroscopy, and practical development of sensors and instrumentation for routine use and high-throughput detection. This review highlights several exceptionally promising research directions and discusses how diverse applications of plasmonic nanoparticles can be integrated in the near future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Infrared perfect absorber and its application as plasmonic sensor.

            We experimentally demonstrate a perfect plasmonic absorber at lambda = 1.6 microm. Its polarization-independent absorbance is 99% at normal incidence and remains very high over a wide angular range of incidence around +/-80 degrees. We introduce a novel concept to utilize this perfect absorber as plasmonic sensor for refractive index sensing. This sensing strategy offers great potential to maintain the performance of localized surface plasmon sensors even in nonlaboratory environments due to its simple and robust measurement scheme.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              High performance optical absorber based on a plasmonic metamaterial

                Bookmark

                Author and article information

                Contributors
                zs101141@163.com , chenfu@wust.edu.cn
                Journal
                Nanoscale Res Lett
                Nanoscale Res Lett
                Nanoscale Research Letters
                Springer US (New York )
                1931-7573
                1556-276X
                11 May 2020
                11 May 2020
                2020
                : 15
                : 103
                Affiliations
                GRID grid.412787.f, ISNI 0000 0000 9868 173X, School of Information Science and Engineering, , Wuhan University of Science and Technology, ; Wuhan, 430081 People’s Republic of China
                Author information
                http://orcid.org/0000-0002-0099-7897
                Article
                3332
                10.1186/s11671-020-03332-x
                7214565
                32394043
                4e867aa1-1f43-46ea-af9d-a51f551ddbd1
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 February 2020
                : 24 April 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 61801186
                Award ID: 61701185
                Award Recipient :
                Categories
                Nano Express
                Custom metadata
                © The Author(s) 2020

                Nanomaterials
                visible,hybrid metasurface,perfect light absorber,silicon cross nanostructure
                Nanomaterials
                visible, hybrid metasurface, perfect light absorber, silicon cross nanostructure

                Comments

                Comment on this article