14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Opinion evolution in time-varying social influence networks with prejudiced agents

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Investigation of social influence dynamics requires mathematical models that are "simple" enough to admit rigorous analysis, and yet sufficiently "rich" to capture salient features of social groups. Thus, the mechanism of iterative opinion pooling from (DeGroot, 1974), which can explain the generation of consensus, was elaborated in (Friedkin and Johnsen, 1999) to take into account individuals' ongoing attachments to their initial opinions, or prejudices. The "anchorage" of individuals to their prejudices may disable reaching consensus and cause disagreement in a social influence network. Further elaboration of this model may be achieved by relaxing its restrictive assumption of a time-invariant influence network. During opinion dynamics on an issue, arcs of interpersonal influence may be added or subtracted from the network, and the influence weights assigned by an individual to his/her neighbors may alter. In this paper, we establish new important properties of the (Friedkin and Johnsen, 1999) opinion formation model, and also examine its extension to time-varying social influence networks.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The structure and function of complex networks

          M. Newman (2003)
          Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Statistical physics of social dynamics

            Statistical physics has proven to be a very fruitful framework to describe phenomena outside the realm of traditional physics. The last years have witnessed the attempt by physicists to study collective phenomena emerging from the interactions of individuals as elementary units in social structures. Here we review the state of the art by focusing on a wide list of topics ranging from opinion, cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, social spreading. We highlight the connections between these problems and other, more traditional, topics of statistical physics. We also emphasize the comparison of model results with empirical data from social systems.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Reaching a Consensus

                Bookmark

                Author and article information

                Journal
                2017-04-23
                Article
                1704.06900
                43d5ecb1-97aa-4c17-9bbc-0c89ae3c7b09

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                accepted to IFAC World Congress 2017, Toulouse, France
                cs.SY cs.SI math.OC nlin.AO

                Social & Information networks,Numerical methods,Performance, Systems & Control,Nonlinear & Complex systems

                Comments

                Comment on this article