25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Sensory nerve supports epithelial stem cell function in healing of corneal epithelium in mice: the role of trigeminal nerve transient receptor potential vanilloid 4

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In order to understand the pathobiology of neurotrophic keratopathy, we established a mouse model by coagulating the first branch of the trigeminal nerve (V1 nerve). In our model, the sensory nerve in the central cornea disappeared and remaining fibers were sparse in the peripheral limbal region. Impaired corneal epithelial healing in the mouse model was associated with suppression of both cell proliferation and expression of stem cell markers in peripheral/limbal epithelium as well as a reduction of transient receptor potential vanilloid 4 (TRPV4) expression in tissue. TRPV4 gene knockout also suppressed epithelial repair in mouse cornea, although it did not seem to directly modulate migration of epithelium. In a co-culture experiment, TRPV4-introduced KO trigeminal ganglion upregulated nerve growth factor (NGF) in cultured corneal epithelial cells, but ganglion with a control vector did not. TRPV4 gene introduction into a damaged V1 nerve rescues the impairment of epithelial healing in association with partial recovery of the stem/progenitor cell markers and upregulation of cell proliferation and of NGF expression in the peripheral/limbal epithelium. Gene transfer of TRPV4 did not accelerate the regeneration of nerve fibers. Sensory nerve TRPV4 is critical to maintain stemness of peripheral/limbal basal cells, and is one of the major mechanisms of homeostasis maintenance of corneal epithelium.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Corneal nerves: structure, contents and function

          Experimental Eye Research, 76(5), 521-542
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Progress in corneal wound healing.

            Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal epithelium, and nanocarriers for corneal drug delivery are discussed. Attention is also paid to problems in wound healing understanding and treatment, such as lack of specific epithelial stem cell markers, reliable identification of stem cells, efficient prevention of haze and stromal scar formation, lack of data on wound regulating microRNAs in keratocytes and endothelial cells, as well as virtual lack of targeted systems for drug and gene delivery to select corneal cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impaired pressure sensation in mice lacking TRPV4.

              The sensation of pressure, mechanosensation, in vertebrates remains poorly understood on the molecular level. The ion channel TRPV4 is in the TRP family and is a candidate for a mechanosensitive calcium-permeable channel. It is located in dorsal root ganglia. In the present study, we show that disrupting the Trpv4 gene in mice markedly reduced the sensitivity of the tail to pressure and acidic nociception. The threshold to noxious stimuli and the conduction velocity of myelinated nerve responding to stimuli were also impaired. Activation of unmyelinated nerve was undetected. However, the mouse still retained olfaction, taste sensation, and heat avoidance. The TRPV4 channel expressed in vitro in Chinese hamster ovary cells was opened by low pH, citrate, and inflation but not by heat or capsaicin. These data identify the TRPV4 channel as essential for the normal detection of pressure and as a receptor of the high-threshold mechanosensory complex.
                Bookmark

                Author and article information

                Journal
                Laboratory Investigation
                Lab Invest
                Springer Nature America, Inc
                0023-6837
                1530-0307
                November 9 2018
                Article
                10.1038/s41374-018-0118-4
                30413814
                43dea4d5-ff5a-407d-a31d-6bbefa7e7742
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article