11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-endometriosis Mechanism of Jiawei Foshou San Based on Network Pharmacology

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Jiawei Foshou San (JFS) is the new formula originated from classic Foshou San formula, composed with ligustrazine, ferulic acid, and tetrahydropalmatine. Previously JFS inhibited the growth of endometriosis (EMS) with unclear mechanism, especially in metastasis, invasion, and epithelial–mesenchymal transition. In this study, network pharmacology was performed to explore potential mechanism of JFS on EMS. Through compound–compound target and compound target–EMS target networks, key targets were analyzed for pathway enrichment. MMP–TIMP were uncovered as one cluster of the core targets. Furthermore, autologous transplantation of EMS rat’s model were used to evaluate in vivo effect of JFS on invasion, metastasis and epithelial–mesenchymal transition. JFS significantly suppressed the growth, and reduced the volume of ectopic endometrium, with modification of pathologic structure. In-depth study, invasion and metastasis were restrained after treating with JFS through decreasing MMP-2 and MMP-9, increasing TIMP-1. Meanwhile, JFS promoted E-cadherin, and attenuated N-cadherin, Vimentin, Snail, Slug, ZEB1, ZEB2, Twist. In brief, anti-EMS effect of JFS might be related to the regulation of epithelial–mesenchymal transformation, thereby inhibition of invasion and metastasis. These findings reveal the potential mechanism of JFS on EMS and the benefit for further evaluation.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition.

            Metastasis, which frequently occurs in breast cancer, is the major cause of mortality; therefore, new treatment strategies are urgently needed. Ferulic acid, isolated from Ferula foetida, a perennial herb, has shown antineoplastic activity in various types of cancers, such as colon and lung cancer, and central nervous system tumors. However, its potential role in suppressing breast cancer metastasis has not been fully understood. In the present study, we evaluated the antitumor activity of ferulic acid in breast cancer cell line-based in vitro and in vivo models. We first showed that ferulic acid treatment resulted in decreased viability, increased apoptosis and suppression of metastatic potential in breast cancer cell line MDA-MB-231. Furthermore, it was demonstrated that the antitumor activity of ferulic acid and its role in suppressing metastasis were regulated by the reversal of epithelial-mesenchymal transition (EMT). Consistent with our findings in vitro, the antitumor potential of ferulic acid was also verified in an MDA-MB-231 xenograft mouse model where significantly decreased tumor volume, weight and increased apoptosis were observed. Taken together, these results indicate that ferulic acid may be used as an effective therapeutic agent against breast cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oestrogen-induced epithelial-mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis.

              Adenomyosis is an oestrogen-dependent disease caused by a downward extension of the endometrium into the uterine myometrium. Epithelial-mesenchymal transition (EMT) endows cells with migratory and invasive properties and can be induced by oestrogen. We hypothesized that oestrogen-induced EMT is critical in the pathogenesis of adenomyosis. We first investigated whether EMT occurred in adenomyotic lesions and whether it correlated with serum 17β-oestradiol (E2) levels. Immunohistochemistry was performed on adenomyotic lesions and corresponding eutopic endometrium samples from women with adenomyosis. Endometria from women without endometrial disorders were used as a control. In the epithelial component of adenomyotic lesions, vimentin expression was up-regulated and E-cadherin expression was down-regulated compared to the eutopic endometrium, suggesting that EMT occurs in adenomyosis. In adenomyosis, the serum E2 level was negatively correlated with E-cadherin expression in the epithelial components of the eutopic endometrium and adenomyotic lesions, suggesting the involvement of oestrogen-induced EMT in endometrial cells. In oestrogen receptor-positive Ishikawa endometrial epithelial cells, oestrogen induced a morphological change to a fibroblast-like phenotype, a shift from epithelial marker expression to mesenchymal marker expression, increased migration and invasion, and up-regulation of the EMT regulator Slug. Raloxifene, a selective oestrogen receptor modulator, abrogated these effects. To determine the role of oestrogen-induced EMT in the implantation of ectopic endometrium, we xenotransplanted eutopic endometrium or adenomyotic lesions from adenomyosis patients into ovariectomized SCID mice. The implantation of endometrium was oestrogen-dependent and was suppressed by raloxifene. Collectively, these data highlight the crucial role of oestrogen-induced EMT in the development of adenomyosis and suggest that raloxifene may be a potential therapeutic agent for adenomyosis patients. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                26 July 2018
                2018
                : 9
                : 811
                Affiliations
                [1] 1College of Pharmaceutical Sciences and Chinese Medicine, Southwest University , Chongqing, China
                [2] 2Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine , Chongqing, China
                [3] 3Pharmacology of Chinese Materia Medica – the Key Discipline Constructed by the State Administration of Traditional Chinese Medicine , Chongqing, China
                [4] 4Department of Traditional Chinese Medicine and Pharmacy, Chongqing Hospital of Traditional Chinese Medicine , Chongqing, China
                [5] 5Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University , Chongqing, China
                Author notes

                Edited by: Yuanjia Hu, University of Macau, Macau

                Reviewed by: Ruixin Zhu, Tongji University, China; Shuai Ji, Xuzhou Medical University, China

                These authors have contributed equally to this work.

                This article was submitted to Ethnopharmacology, a section of the journal Frontiers in Pharmacology

                Article
                10.3389/fphar.2018.00811
                6071511
                30093862
                440c897e-fdcf-4d10-9f03-15ed9ab2225e
                Copyright © 2018 Chen, Wei, Zhang, Sun, Li, Wang, Xu, Li and Li.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 April 2018
                : 09 July 2018
                Page count
                Figures: 8, Tables: 3, Equations: 0, References: 50, Pages: 14, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81773984
                Award ID: 81402441
                Categories
                Pharmacology
                Original Research

                Pharmacology & Pharmaceutical medicine
                jiawei foshou san,endometriosis,network pharmacology,invasion and metastasis,epithelial–mesenchymal transition

                Comments

                Comment on this article