16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta

      research-article
      1 , 1 ,
      BMC Evolutionary Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Wolbachia are endosymbiotic bacteria that commonly infect numerous arthropods. Despite their broad taxonomic distribution, the transmission patterns of these bacteria within and among host species are not well understood. We sequenced a portion of the wsp gene from the Wolbachia genome infecting 138 individuals from eleven geographically distributed native populations of the fire ant Solenopsis invicta. We then compared these wsp sequence data to patterns of mitochondrial DNA (mtDNA) variation of both infected and uninfected host individuals to infer the transmission patterns of Wolbachia in S. invicta.

          Results

          Three different Wolbachia ( wsp) variants occur within S. invicta, all of which are identical to previously described strains in fire ants. A comparison of the distribution of Wolbachia variants within S. invicta to a phylogeny of mtDNA haplotypes suggests S. invicta has acquired Wolbachia infections on at least three independent occasions. One common Wolbachia variant in S. invicta (wSinvictaB) is associated with two divergent mtDNA haplotype clades. Further, within each of these clades, Wolbachia-infected and uninfected individuals possess virtually identical subsets of mtDNA haplotypes, including both putative derived and ancestral mtDNA haplotypes. The same pattern also holds for wSinvictaA, where at least one and as many as three invasions into S. invicta have occurred. These data suggest that the initial invasions of Wolbachia into host ant populations may be relatively ancient and have been followed by multiple secondary losses of Wolbachia in different infected lineages over time. Finally, our data also provide additional insights into the factors responsible for previously reported variation in Wolbachia prevalence among S. invicta populations.

          Conclusion

          The history of Wolbachia infections in S. invicta is rather complex and involves multiple invasions or horizontal transmission events of Wolbachia into this species. Although these Wolbachia infections apparently have been present for relatively long time periods, these data clearly indicate that Wolbachia infections frequently have been secondarily lost within different lineages. Importantly, the uncoupled transmission of the Wolbachia and mtDNA genomes suggests that the presumed effects of Wolbachia on mtDNA evolution within S. invicta are less severe than originally predicted. Thus, the common concern that use of mtDNA markers for studying the evolutionary history of insects is confounded by maternally inherited endosymbionts such as Wolbachia may be somewhat unwarranted in the case of S. invicta.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution.

          A V Brower (1994)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid spread of an inherited incompatibility factor in California Drosophila.

            In Drosophila simulans in California, an inherited cytoplasmic incompatibility factor reduces egg hatch when infected males mate with uninfected females. The infection is spreading at a rate of more than 100 km per year; populations in which the infection was rare have become almost completely infected within three years. Analyses of the spread using estimates of selection in the field suggest dispersal distances far higher than those found by direct observation of flies. Hence, occasional long-distance dispersal, possibly coupled with local extinction and recolonization, may be important to the dynamics. Incompatibility factors that can readily spread through natural populations may be useful for population manipulation and important as a post-mating isolating mechanism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phylogeny of Wolbachia in filarial nematodes.

              Intracellular bacteria have been observed in various species of filarial nematodes (family Onchocercidae). The intracellular bacterium of the canine filaria Dirofilaria immitis has been shown to be closely related to Wolbachia, a rickettsia-like micro-organism that is widespread among arthropods. However, the relationships between endosymbionts of different filariae, and between these and the arthropod wolbachiae, appear not to have been studied. To address these issues we have examined ten species of filarial nematodes for the presence of Wolbachia. For nine species, all samples examined were PCR positive using primers specific for the ftsZ gene of Wolbachia. For one species, the examined samples were PCR negative. Sequences of the amplified ftsZ gene fragments of filarial wolbachiae fall into two clusters (C and D), which are distinct from the A and B clusters recognized for arthropod wolbachiae. These four lineages (A-D) are related in a star-like phylogeny, with higher nucleotide divergence observed between C and D wolbachiae than that observed between A and B wolbachiae. In addition, within each of the two lineages of filarial wolbachiae, the phylogeny of the symbionts is consistent with the host phylogeny. Thus, there is no evidence for recent Wolbachia transmission between arthropods and nematodes. Endosymbiont 16S ribosomal DNA sequences from a subset of filarial species support these findings.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central (London )
                1471-2148
                2005
                31 May 2005
                : 5
                : 35
                Affiliations
                [1 ]Department of Entomology, 643 Russell Labs, 1630 Linden Drive, University of Wisconsin, Madison, WI 53706 USA
                Article
                1471-2148-5-35
                10.1186/1471-2148-5-35
                1175846
                15927071
                441a9fd0-6624-4a45-9cd8-ccb090d68741
                Copyright © 2005 Ahrens and Shoemaker; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 January 2005
                : 31 May 2005
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article