36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structural Polymorphism of 441-Residue Tau at Single Residue Resolution

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer disease is characterized by abnormal protein deposits in the brain, such as extracellular amyloid plaques and intracellular neurofibrillary tangles. The tangles are made of a protein called tau comprising 441 residues in its longest isoform. Tau belongs to the class of natively unfolded proteins, binds to and stabilizes microtubules, and partially folds into an ordered β-structure during aggregation to Alzheimer paired helical filaments (PHFs). Here we show that it is possible to overcome the size limitations that have traditionally hampered detailed nuclear magnetic resonance (NMR) spectroscopy studies of such large nonglobular proteins. This is achieved using optimal NMR pulse sequences and matching of chemical shifts from smaller segments in a divide and conquer strategy. The methodology reveals that 441-residue tau is highly dynamic in solution with a distinct domain character and an intricate network of transient long-range contacts important for pathogenic aggregation. Moreover, the single-residue view provided by the NMR analysis reveals unique insights into the interaction of tau with microtubules. Our results establish that NMR spectroscopy can provide detailed insight into the structural polymorphism of very large nonglobular proteins.

          Author Summary

          The Tau protein, which plays a central role in the progression of Alzheimer disease, is normally expressed in nerve axons, where it stabilizes microtubules (MTs), supports the outgrowth of axons, and modulates the transport of vesicles and organelles along MTs. In Alzheimer disease, Tau becomes excessively phosphorylated, loses its ability to bind to MTs, and aggregates into intracellular abnormal protein deposits. Many efforts have been made over the years to understand Tau structure as a way to understand Tau function and its mechanisms of action, but these efforts have primarily used traditional biochemistry and molecular biology approaches and therefore have addressed structure and function at a relatively primitive level. Here, we show that it is possible to characterize the structure and dynamics of 441-residue Tau at single residue resolution using nuclear magnetic resonance (NMR) spectroscopy. NMR spectroscopy demonstrates that 441-residue Tau is highly dynamic in solution with a distinct domain character and an intricate network of transient long-range contacts important for pathogenic aggregation. Moreover, the single-residue view provided by the NMR analysis reveals unique insights into the interaction of Tau with MTs.

          Abstract

          Nuclear magnetic resonance spectroscopy reveals the conformations of Tau, the protein that plays a central role in the progression of Alzheimer disease.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Tau-mediated neurodegeneration in Alzheimer's disease and related disorders.

          Advances in our understanding of the mechanisms of tau-mediated neurodegeneration in Alzheimer's disease (AD) and related tauopathies, which are characterized by prominent CNS accumulations of fibrillar tau inclusions, are rapidly moving this previously underexplored disease pathway to centre stage for disease-modifying drug discovery efforts. However, controversies abound concerning whether or not the deleterious effects of tau pathologies result from toxic gains-of-function by pathological tau or from critical losses of normal tau function in the disease state. This Review summarizes the most recent advances in our knowledge of the mechanisms of tau-mediated neurodegeneration to forge an integrated concept of those tau-linked disease processes that drive the onset and progression of AD and related tauopathies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Function and structure of inherently disordered proteins.

            The application of bioinformatics methodologies to proteins inherently lacking 3D structure has brought increased attention to these macromolecules. Here topics concerning these proteins are discussed, including their prediction from amino acid sequence, their enrichment in eukaryotes compared to prokaryotes, their more rapid evolution compared to structured proteins, their organization into specific groups, their structural preferences, their half-lives in cells, their contributions to signaling diversity (via high contents of multiple-partner binding sites, post-translational modifications, and alternative splicing), their distinct functional repertoire compared to that of structured proteins, and their involvement in diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A protein factor essential for microtubule assembly.

              A heat stable protein essentail for microtubule assembly has been isolated. This protein, which we designate tau (tau), is present in association with tubulin purified from porcine brain by repeated cycles of polymerization. Tau is separated from tubulin by ion exchange chromatography on phosphocellulose. In the absence of tau, tubulin exists entirely as a 6S dimer of two polypeptide chains (alpha and beta tubulin) with a molecular weight of 120,000, which will not assemble into microtubules in vitro. Addition of tau completely restores tubule-forming capacity. Under nonpolymerizing conditions, tau converts 6S dimers to 36S rings-structures which have been implicated as intermediates in tubule formation. Hence, tau appears to act on the 6S tubulin dimer, activating it for polymerization. The unique ability of tau to restore the normal features of in vitro microtubule assembly makes it likely that tau is a major regulator of microtubule formation in cells.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                February 2009
                17 February 2009
                : 7
                : 2
                : e1000034
                Affiliations
                [1 ] Department for Nuclear Magnetic Resonance (NMR)-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
                [2 ] Max Planck Unit for Structural Molecular Biology, Hamburg, Germany
                [3 ] Deutsche Forschungsgemeinschaft (DFG) Research Center for the Molecular Physiology of the Brain (CMPB), Göttingen, Germany
                Brandeis University, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: mzwecks@ 123456gwdg.de
                Article
                08-PLBI-RA-2022R4 plbi-07-02-06
                10.1371/journal.pbio.1000034
                2642882
                19226187
                441cc940-e9eb-4389-b363-029bd32856f0
                Copyright: © 2009 Mukrasch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 May 2008
                : 7 January 2009
                Page count
                Pages: 1
                Categories
                Research Article
                Biophysics
                Neurological Disorders
                Custom metadata
                Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, Biernat J, et al. (2009) Structural polymorphism of 441-residue Tau at single residue resolution. PLoS Biol 7(2): e1000034. doi: 10.1371/journal.pbio.1000034

                Life sciences
                Life sciences

                Comments

                Comment on this article