3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preoperative nomogram for microvascular invasion prediction based on clinical database in hepatocellular carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The presence of microvascular invasion (MVI) is a critical determinant of early hepatocellular carcinoma (HCC) recurrence and prognosis. We developed a nomogram model integrating clinical laboratory examinations and radiological imaging results from our clinical database to predict microvascular invasion presence at preoperation in HCC patients. 242 patients with pathologically confirmed HCC at the Ningbo Medical Centre Lihuili Hospital from September 2015 to January 2021 were included in this study. Baseline clinical laboratory examinations and radiological imaging results were collected from our clinical database. LASSO regression analysis model was used to construct data dimensionality reduction and elements selection. Multivariate logistic regression analysis was performed to identify the independent risk factors associated with MVI and finally a nomogram for predicting MVI presence of HCC was established. Nomogram performance was assessed via internal validation and calibration curve statistics. Decision curve analysis (DCA) was conducted to determine the clinical usefulness of the nomogram model by quantifying the net benefits along with the increase in threshold probabilities. Survival analysis indicated that the probability of overall survival (OS) and recurrence-free survival (RFS) were significantly different between patients with MVI and without MVI ( P < 0.05). Histopathologically identified MVI was found in 117 of 242 patients (48.3%). The preoperative factors associated with MVI were large tumor diameter ( OR = 1.271, 95%CI: 1.137–1.420, P < 0.001), AFP level greater than 20 ng/mL (20–400 vs. ≤ 20, OR = 2.025, 95%CI: 1.056–3.885, P = 0.034; > 400 vs. ≤ 20, OR = 3.281, 95%CI: 1.661–6.480, P = 0.001), total bilirubin level greater than 23 umol/l ( OR = 2.247, 95%CI: 1.037–4.868, P = 0.040). Incorporating tumor diameter, AFP and TB, the nomogram achieved a better concordance index of 0.725 (95%CI: 0.661–0.788) in predicting MVI presence. Nomogram analysis showed that the total factor score ranged from 0 to 160, and the corresponding risk rate ranged from 0.20 to 0.90. The DCA showed that if the threshold probability was > 5%, using the nomogram to diagnose MVI could acquire much more benefit. And the net benefit of the nomogram model was higher than single variable within 0.3–0.8 of threshold probability. In summary, the presence of MVI is an independent prognostic risk factor for RFS. The nomogram detailed here can preoperatively predict MVI presence in HCC patients. Using the nomogram model may constitute a usefully clinical tool to guide a rational and personalized subsequent therapeutic choice.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How to build and interpret a nomogram for cancer prognosis.

            Nomograms are widely used for cancer prognosis, primarily because of their ability to reduce statistical predictive models into a single numerical estimate of the probability of an event, such as death or recurrence, that is tailored to the profile of an individual patient. User-friendly graphical interfaces for generating these estimates facilitate the use of nomograms during clinical encounters to inform clinical decision making. However, the statistical underpinnings of these models require careful scrutiny, and the degree of uncertainty surrounding the point estimates requires attention. This guide provides a nonstatistical audience with a methodological approach for building, interpreting, and using nomograms to estimate cancer prognosis or other health outcomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Changing cancer survival in China during 2003–15: a pooled analysis of 17 population-based cancer registries

              From 2003 to 2005, standardised 5-year cancer survival in China was much lower than in developed countries and varied substantially by geographical area. Monitoring population-level cancer survival is crucial to the understanding of the overall effectiveness of cancer care. We therefore aimed to investigate survival statistics for people with cancer in China between 2003 and 2015.
                Bookmark

                Author and article information

                Contributors
                13567886669@139.com
                lucaide@nbu.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                7 July 2021
                7 July 2021
                2021
                : 11
                : 13999
                Affiliations
                GRID grid.203507.3, ISNI 0000 0000 8950 5267, Department of Hepatopancreatobiliary Surgery, Ningbo Medical Centre Lihuili Hospital, , Ningbo University, ; Ningbo, 315040 Zhejiang China
                Article
                93528
                10.1038/s41598-021-93528-7
                8263707
                34234239
                44312758-58d0-4b0a-a3bf-f64d654b970e
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 April 2021
                : 25 June 2021
                Funding
                Funded by: Ningbo Health Branding Subject Fund
                Award ID: PPXK2018-03
                Award ID: PPXK2018-03
                Award Recipient :
                Funded by: Science and Technology program of Zhejiang Health
                Award ID: 2021KY1035
                Award Recipient :
                Funded by: Medical Health Science and Technology Project of Zhejiang Province
                Award ID: 2019ZD047
                Award ID: 2019ZD047
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                cancer models,hepatocellular carcinoma
                Uncategorized
                cancer models, hepatocellular carcinoma

                Comments

                Comment on this article