4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Real-Time Control of a Multi-Degree-of-Freedom Mirror Myoelectric Interface During Functional Task Training

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Motor learning mediated by motor training has in the past been explored for rehabilitation. Myoelectric interfaces together with exoskeletons allow patients to receive real-time feedback about their muscle activity. However, the number of degrees of freedom that can be simultaneously controlled is limited, which hinders the training of functional tasks and the effectiveness of the rehabilitation therapy. The objective of this study was to develop a myoelectric interface that would allow multi-degree-of-freedom control of an exoskeleton involving arm, wrist and hand joints, with an eye toward rehabilitation. We tested the effectiveness of a myoelectric decoder trained with data from one upper limb and mirrored to control a multi-degree-of-freedom exoskeleton with the opposite upper limb (i.e., mirror myoelectric interface) in 10 healthy participants. We demonstrated successful simultaneous control of multiple upper-limb joints by all participants. We showed evidence that subjects learned the mirror myoelectric model within the span of a five-session experiment, as reflected by a significant decrease in the time to execute trials and in the number of failed trials. These results are the necessary precursor to evaluating if a decoder trained with EMG from the healthy limb could foster learning of natural EMG patterns and lead to motor rehabilitation in stroke patients.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage.

          This paper reviews 10 principles of experience-dependent neural plasticity and considerations in applying them to the damaged brain. Neuroscience research using a variety of models of learning, neurological disease, and trauma are reviewed from the perspective of basic neuroscientists but in a manner intended to be useful for the development of more effective clinical rehabilitation interventions. Neural plasticity is believed to be the basis for both learning in the intact brain and relearning in the damaged brain that occurs through physical rehabilitation. Neuroscience research has made significant advances in understanding experience-dependent neural plasticity, and these findings are beginning to be integrated with research on the degenerative and regenerative effects of brain damage. The qualities and constraints of experience-dependent neural plasticity are likely to be of major relevance to rehabilitation efforts in humans with brain damage. However, some research topics need much more attention in order to enhance the translation of this area of neuroscience to clinical research and practice. The growing understanding of the nature of brain plasticity raises optimism that this knowledge can be capitalized upon to improve rehabilitation efforts and to optimize functional outcome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Principles of sensorimotor learning.

            The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities - whether it is snowboarding or ballroom dancing - but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain-machine interface in chronic stroke rehabilitation: a controlled study.

              Chronic stroke patients with severe hand weakness respond poorly to rehabilitation efforts. Here, we evaluated efficacy of daily brain-machine interface (BMI) training to increase the hypothesized beneficial effects of physiotherapy alone in patients with severe paresis in a double-blind sham-controlled design proof of concept study. Thirty-two chronic stroke patients with severe hand weakness were randomly assigned to 2 matched groups and participated in 17.8 ± 1.4 days of training rewarding desynchronization of ipsilesional oscillatory sensorimotor rhythms with contingent online movements of hand and arm orthoses (experimental group, n = 16). In the control group (sham group, n = 16), movements of the orthoses occurred randomly. Both groups received identical behavioral physiotherapy immediately following BMI training or the control intervention. Upper limb motor function scores, electromyography from arm and hand muscles, placebo-expectancy effects, and functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent activity were assessed before and after intervention. A significant group × time interaction in upper limb (combined hand and modified arm) Fugl-Meyer assessment (cFMA) motor scores was found. cFMA scores improved more in the experimental than in the control group, presenting a significant improvement of cFMA scores (3.41 ± 0.563-point difference, p = 0.018) reflecting a clinically meaningful change from no activity to some in paretic muscles. cFMA improvements in the experimental group correlated with changes in fMRI laterality index and with paretic hand electromyography activity. Placebo-expectancy scores were comparable for both groups. The addition of BMI training to behaviorally oriented physiotherapy can be used to induce functional improvements in motor function in chronic stroke patients without residual finger movements and may open a new door in stroke neurorehabilitation. Copyright © 2013 American Neurological Association.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                11 March 2022
                2022
                : 16
                : 764936
                Affiliations
                [1] 1Neurotechnology Unit, TECNALIA, Basque Research and Technology Alliance , Donostia-San Sebastian, Spain
                [2] 2Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen, Germany
                [3] 3Bitbrain Technologies , Zaragoza, Spain
                Author notes

                Edited by: Andrea d’Avella, University of Messina, Italy

                Reviewed by: Zhiyuan Lu, University of Health and Rehabilitation Sciences, China; Ramana Vinjamuri, University of Maryland, Baltimore County, United States

                *Correspondence: Andrea Sarasola-Sanz, andrea.sarasola@ 123456tecnalia.com

                This article was submitted to Neuroprosthetics, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2022.764936
                8962619
                35360179
                444b411c-8929-4330-8754-cb4d60882411
                Copyright © 2022 Sarasola-Sanz, López-Larraz, Irastorza-Landa, Rossi, Figueiredo, McIntyre and Ramos-Murguialday.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 August 2021
                : 07 February 2022
                Page count
                Figures: 5, Tables: 0, Equations: 1, References: 61, Pages: 12, Words: 10053
                Funding
                Funded by: Eurostars, doi 10.13039/100013297;
                Award ID: 113928
                Funded by: Bundesministerium für Bildung und Forschung, doi 10.13039/501100002347;
                Award ID: 16SV8606
                Award ID: 01QE2023
                Funded by: Eberhard Karls Universität Tübingen, doi 10.13039/501100002345;
                Award ID: 2452-0-0/1
                Funded by: Ministerio de Ciencia, Innovación y Universidades, doi 10.13039/100014440;
                Award ID: KK-2019/00018
                Funded by: European Commission, doi 10.13039/501100000780;
                Award ID: 951910
                Categories
                Neuroscience
                Original Research

                Neurosciences
                motor learning,myoelectric interface,multi-dof exoskeleton control,rehabilitation,stroke

                Comments

                Comment on this article