36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Time-division multiplexing for myoelectric closed-loop control using electrotactile feedback

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Restoring sensory feedback in myoelectric prostheses is still an open challenge. Closing the loop might lead to a more effective utilization and better integration of these systems into the body scheme of the user. Electrotactile stimulation can be employed to transmit the feedback information to the user, but it represents a strong interference to the recording of the myoelectric signals that are used for control. Time-division multiplexing (TDM) can be applied to avoid this interference by performing the stimulation and recording in dedicated, non-overlapping time windows.

          Methods

          A closed-loop compensatory tracking task with myocontrol and electrotactile stimulation was used to investigate how the duration of the feedback window (FW) influences the ability to perceive the feedback information and react with an appropriate control action. Nine subjects performed eight trials with continuous recording and contralateral feedback (CONT-CLT) and TDM with ispilateral stimulation and recording using the FW of 40 ms (TDM40), 100 ms (TDM100) and 300 ms (TDM300). The tracking quality was evaluated by comparing the reference and generated trajectories using cross-correlation coefficient (CCCOEF), time delay, root mean square tracking error, and the amount of overshoot.

          Results

          The control performance in CONT-CLT was the best in all the outcome measures. The overall worst performance was obtained using TDM with the shortest FW (TDM40). There was no significant difference between TDM100 and TDM300, and the quality of tracking in these two conditions was high (CCCOEF ~ 0.95). The results demonstrated that FW duration is indeed an important parameter in TDM, which appears to have an optimal value. Among the tested cases, the FW duration of 100 ms seems to be the best trade-off between the quality of perception and a limited command update rate.

          Conclusions

          This study represents the first systematic evaluation of a TDM-based approach for closing the loop using electrotactile feedback in myoelectric systems. The overall conclusion is that TDM is a feasible and attractive method for closed-loop myocontrol, since it is easy to implement (software-only solution), has limited impact on the performance when using proper FW duration, and might decrease habituation due to burst-like stimulation delivery.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          Myoelectric control systems—A survey

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrotactile and vibrotactile displays for sensory substitution systems.

            Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used, or with the information processed in some useful way. We review the methods used to present visual, auditory, and modified tactile information to the skin. First, we discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). Next, we review the relevant sensory physiology of the skin, including both the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile (also called electrocutaneous) stimulation). We briefly summarize the information-processing ability of the tactile sense and its relevance to sensory substitution. Finally, we discuss the limitations of current tactile display technologies and suggest areas requiring further research for sensory substitution systems to become more practical.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sensory feedback in upper limb prosthetics.

              One of the challenges facing prosthetic designers and engineers is to restore the missing sensory function inherit to hand amputation. Several different techniques can be employed to provide amputees with sensory feedback: sensory substitution methods where the recorded stimulus is not only transferred to the amputee, but also translated to a different modality (modality-matched feedback), which transfers the stimulus without translation and direct neural stimulation, which interacts directly with peripheral afferent nerves. This paper presents an overview of the principal works and devices employed to provide upper limb amputees with sensory feedback. The focus is on sensory substitution and modality matched feedback; the principal features, advantages and disadvantages of the different methods are presented.
                Bookmark

                Author and article information

                Contributors
                strahinja.dosen@bccn.uni-goettingen.de
                marie-caroline.schaeffer@centraliens-nantes.de
                dario.farina@bccn.uni-goettingen.de
                Journal
                J Neuroeng Rehabil
                J Neuroeng Rehabil
                Journal of NeuroEngineering and Rehabilitation
                BioMed Central (London )
                1743-0003
                15 September 2014
                15 September 2014
                2014
                : 11
                : 1
                : 138
                Affiliations
                [ ]Department of Neurorehabilitation Engineering, University Medical Center Göttingen (UMG), Georg-August University, 37075 Göttingen, Germany
                [ ]département Automatique et Robotique, Ecole Centrale de Nantes, 1 rue de la Noë, 44321 Nantes, France
                Article
                659
                10.1186/1743-0003-11-138
                4182789
                25224266
                5b5b8cd1-ff90-4fd3-b92e-f5872eff6c38
                © Dosen et al.; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 28 May 2014
                : 27 August 2014
                Categories
                Research
                Custom metadata
                © The Author(s) 2014

                Neurosciences
                sensory feedback in prosthetics,sensory substitution,time-division multiplexing,closed-loop control,feedback window

                Comments

                Comment on this article