4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Vimentin intermediate filament assembly regulates fibroblast invasion in fibrogenic lung injury

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d4049572e237">Idiopathic pulmonary fibrosis (IPF) is a progressive disease, with a median survival of 3–5 years following diagnosis. Lung remodeling by invasive fibroblasts is a hallmark of IPF. In this study, we demonstrate that inhibition of vimentin intermediate filaments (VimIFs) decreases the invasiveness of IPF fibroblasts and confers protection against fibrosis in a murine model of experimental lung injury. Increased expression and organization of VimIFs contribute to the invasive property of IPF fibroblasts in connection with deficient cellular autophagy. Blocking VimIF assembly by pharmacologic and genetic means also increases autophagic clearance of collagen type I. Furthermore, inhibition of expression of collagen type I by siRNA decreased invasiveness of fibroblasts. In a bleomycin injury model, enhancing autophagy in fibroblasts by an inhibitor of VimIF assembly, withaferin A (WFA), protected from fibrotic lung injury. Additionally, in 3D lung organoids, or pulmospheres, from patients with IPF, WFA reduced the invasiveness of lung fibroblasts in the majority of subjects tested. These studies provide insights into the functional role of vimentin, which regulates autophagy and restricts the invasiveness of lung fibroblasts. </p><p class="first" id="d4049572e240">Vimentin regulates fibroblast invasion, extracellular matrix formation, and autophagy in idiopathic pulmonary fibrosis, and inhibiting vimentin-intermediate filament assembly may be an attractive therapeutic approach. </p>

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Matrix crosslinking forces tumor progression by enhancing integrin signaling.

          Tumors are characterized by extracellular matrix (ECM) remodeling and stiffening. The importance of ECM remodeling to cancer is appreciated; the relevance of stiffening is less clear. We found that breast tumorigenesis is accompanied by collagen crosslinking, ECM stiffening, and increased focal adhesions. Induction of collagen crosslinking stiffened the ECM, promoted focal adhesions, enhanced PI3 kinase (PI3K) activity, and induced the invasion of an oncogene-initiated epithelium. Inhibition of integrin signaling repressed the invasion of a premalignant epithelium into a stiffened, crosslinked ECM and forced integrin clustering promoted focal adhesions, enhanced PI3K signaling, and induced the invasion of a premalignant epithelium. Consistently, reduction of lysyl oxidase-mediated collagen crosslinking prevented MMTV-Neu-induced fibrosis, decreased focal adhesions and PI3K activity, impeded malignancy, and lowered tumor incidence. These data show how collagen crosslinking can modulate tissue fibrosis and stiffness to force focal adhesions, growth factor signaling and breast malignancy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cellular senescence mediates fibrotic pulmonary disease

            Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by interstitial remodelling, leading to compromised lung function. Cellular senescence markers are detectable within IPF lung tissue and senescent cell deletion rejuvenates pulmonary health in aged mice. Whether and how senescent cells regulate IPF or if their removal may be an efficacious intervention strategy is unknown. Here we demonstrate elevated abundance of senescence biomarkers in IPF lung, with p16 expression increasing with disease severity. We show that the secretome of senescent fibroblasts, which are selectively killed by a senolytic cocktail, dasatinib plus quercetin (DQ), is fibrogenic. Leveraging the bleomycin-injury IPF model, we demonstrate that early-intervention suicide-gene-mediated senescent cell ablation improves pulmonary function and physical health, although lung fibrosis is visibly unaltered. DQ treatment replicates benefits of transgenic clearance. Thus, our findings establish that fibrotic lung disease is mediated, in part, by senescent cells, which can be targeted to improve health and function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation.

              Aberrant signaling through the class I phosphatidylinositol 3-kinase (PI3K)-Akt axis is frequent in human cancer. Here, we show that Beclin 1, an essential autophagy and tumor suppressor protein, is a target of the protein kinase Akt. Expression of a Beclin 1 mutant resistant to Akt-mediated phosphorylation increased autophagy, reduced anchorage-independent growth, and inhibited Akt-driven tumorigenesis. Akt-mediated phosphorylation of Beclin 1 enhanced its interactions with 14-3-3 and vimentin intermediate filament proteins, and vimentin depletion increased autophagy and inhibited Akt-driven transformation. Thus, Akt-mediated phosphorylation of Beclin 1 functions in autophagy inhibition, oncogenesis, and the formation of an autophagy-inhibitory Beclin 1/14-3-3/vimentin intermediate filament complex. These findings have broad implications for understanding the role of Akt signaling and intermediate filament proteins in autophagy and cancer.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JCI Insight
                American Society for Clinical Investigation
                2379-3708
                February 28 2019
                April 4 2019
                April 4 2019
                April 4 2019
                : 4
                : 7
                Article
                10.1172/jci.insight.123253
                6483650
                30944258
                4457ceb1-711b-4dea-9956-8f7daf3a5de0
                © 2019
                History

                Comments

                Comment on this article