34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hemolytic Uremic Syndrome: Toxins, Vessels, and Inflammation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hemolytic uremic syndrome (HUS) is characterized by thrombotic microangiopathy of the glomerular microcirculation and other vascular beds. Its defining clinical phenotype is acute kidney injury (AKI), microangiopathic anemia, and thrombocytopenia. There are many etiologies of HUS including infection by Shiga toxin-producing bacterial strains, medications, viral infections, malignancy, and mutations of genes coding for proteins involved in the alternative pathway of complement. In the aggregate, although HUS is a rare disease, it is one of the most common causes of AKI in previously healthy children and accounts for a sizable number of pediatric and adult patients who progress to end stage kidney disease. There has been great progress over the past 20 years in understanding the pathophysiology of HUS and its related disorders. There has been intense focus on vascular injury in HUS as the major mechanism of disease and target for effective therapies for this acute illness. In all forms of HUS, there is evidence of both systemic and intra-glomerular inflammation and perturbations in the immune system. Renewed investigation into these aspects of HUS may prove helpful in developing new interventions that can attenuate glomerular and tubular injury and improve clinical outcomes in patients with HUS.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome.

          Most cases of diarrhoea-associated haemolytic uraemic syndrome (HUS) are caused by Shiga-toxin-producing bacteria; the pathophysiology differs from that of thrombotic thrombocytopenic purpura. Among Shiga-toxin-producing Escherichia coli (STEC), O157:H7 has the strongest association worldwide with HUS. Many different vehicles, in addition to the commonly suspected ground (minced) beef, can transmit this pathogen to people. Antibiotics, antimotility agents, narcotics, and non-steroidal anti-inflammatory drugs should not be given to acutely infected patients, and we advise hospital admission and administration of intravenous fluids. Management of HUS remains supportive; there are no specific therapies to ameliorate the course. The vascular injury leading to HUS is likely to be well under way by the time infected patients seek medical attention for diarrhoea. The best way to prevent HUS is to prevent primary infection with Shiga-toxin-producing bacteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            C3 glomerulopathy: consensus report

            C3 glomerulopathy is a recently introduced pathological entity whose original definition was glomerular pathology characterized by C3 accumulation with absent or scanty immunoglobulin deposition. In August 2012, an invited group of experts (comprising the authors of this document) in renal pathology, nephrology, complement biology, and complement therapeutics met to discuss C3 glomerulopathy in the first C3 Glomerulopathy Meeting. The objectives were to reach a consensus on: the definition of C3 glomerulopathy, appropriate complement investigations that should be performed in these patients, and how complement therapeutics should be explored in the condition. This meeting report represents the current consensus view of the group.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Atypical hemolytic uremic syndrome

              Hemolytic uremic syndrome (HUS) is defined by the triad of mechanical hemolytic anemia, thrombocytopenia and renal impairment. Atypical HUS (aHUS) defines non Shiga-toxin-HUS and even if some authors include secondary aHUS due to Streptococcus pneumoniae or other causes, aHUS designates a primary disease due to a disorder in complement alternative pathway regulation. Atypical HUS represents 5 -10% of HUS in children, but the majority of HUS in adults. The incidence of complement-aHUS is not known precisely. However, more than 1000 aHUS patients investigated for complement abnormalities have been reported. Onset is from the neonatal period to the adult age. Most patients present with hemolytic anemia, thrombocytopenia and renal failure and 20% have extra renal manifestations. Two to 10% die and one third progress to end-stage renal failure at first episode. Half of patients have relapses. Mutations in the genes encoding complement regulatory proteins factor H, membrane cofactor protein (MCP), factor I or thrombomodulin have been demonstrated in 20-30%, 5-15%, 4-10% and 3-5% of patients respectively, and mutations in the genes of C3 convertase proteins, C3 and factor B, in 2-10% and 1-4%. In addition, 6-10% of patients have anti-factor H antibodies. Diagnosis of aHUS relies on 1) No associated disease 2) No criteria for Shigatoxin-HUS (stool culture and PCR for Shiga-toxins; serology for anti-lipopolysaccharides antibodies) 3) No criteria for thrombotic thrombocytopenic purpura (serum ADAMTS 13 activity > 10%). Investigation of the complement system is required (C3, C4, factor H and factor I plasma concentration, MCP expression on leukocytes and anti-factor H antibodies; genetic screening to identify risk factors). The disease is familial in approximately 20% of pedigrees, with an autosomal recessive or dominant mode of transmission. As penetrance of the disease is 50%, genetic counseling is difficult. Plasmatherapy has been first line treatment until presently, without unquestionable demonstration of efficiency. There is a high risk of post-transplant recurrence, except in MCP-HUS. Case reports and two phase II trials show an impressive efficacy of the complement C5 blocker eculizumab, suggesting it will be the next standard of care. Except for patients treated by intensive plasmatherapy or eculizumab, the worst prognosis is in factor H-HUS, as mortality can reach 20% and 50% of survivors do not recover renal function. Half of factor I-HUS progress to end-stage renal failure. Conversely, most patients with MCP-HUS have preserved renal function. Anti-factor H antibodies-HUS has favourable outcome if treated early.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Med (Lausanne)
                Front Med (Lausanne)
                Front. Med.
                Frontiers in Medicine
                Frontiers Media S.A.
                2296-858X
                04 November 2014
                2014
                : 1
                : 42
                Affiliations
                [1] 1Division of Nephrology, Department of Pediatrics, NYU Langone Medical Center , New York, NY, USA
                Author notes

                Edited by: Jochen Reiser, Rush University Medical Center, USA

                Reviewed by: Orlando Gutierrez, University of Alabama at Birmingham, USA; Markus Bitzer, University of Michigan, USA

                *Correspondence: Howard Trachtman, NYU Langone Medical Center, CTSI, 227 E 30th Street, Room #110, New York, NY 10016, USA e-mail: howard.trachtman@ 123456nyumc.org

                This article was submitted to Nephrology, a section of the journal Frontiers in Medicine.

                Article
                10.3389/fmed.2014.00042
                4292208
                25593915
                447742b5-164b-4334-a34a-8482635a5917
                Copyright © 2014 Cheung and Trachtman.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 August 2014
                : 14 October 2014
                Page count
                Figures: 0, Tables: 3, Equations: 0, References: 67, Pages: 7, Words: 6568
                Categories
                Medicine
                Mini Reviews in Medicine

                thrombotic microangiopathy,hemolytic uremic syndrome,shiga toxin,inflammation,alternative pathway of complement

                Comments

                Comment on this article