3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Degradation and Biocompatibility of AZ31 Magnesium Alloy Implants In Vitro and In Vivo: A Micro-Computed Tomography Study in Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In current orthodontic practice, miniscrew implants (MSIs) for anchorage and bone fixation plates (BFPs) for surgical orthodontic treatment are commonly used. MSIs and BFPs that are made of bioabsorbable material would avoid the need for removal surgery. We investigated the mechanical, degradation and osseointegration properties and the bone-implant interface strength of the AZ31 bioabsorbable magnesium alloy to assess its suitability for MSIs and BFPs. The mechanical properties of a Ti alloy (TiA), AZ31 Mg alloy (MgA), pure Mg and poly-L-lactic acid (PLA) were investigated using a nanoindentation test. Also, pH changes in the solution and degradation rates were determined using immersion tests. Three-dimensional, high-resolution, micro-computed tomography (CT) of implants in the rat femur was performed. Biomechanical push-out testing was conducted to calculate the maximum shear strength of the bone-implant interface. Scanning electron microscopy (SEM), histological analysis and an evaluation of systemic inflammation were performed. MgA has mechanical properties similar to those of bone, and is suitable for implants. The degradation rate of MgA was significantly lower than that of Mg. MgA achieved a significantly higher bone-implant bond strength than TiA. Micro-CT revealed no significant differences in bone density or bone-implant contact between TiA and MgA. In conclusion, the AZ31 Mg alloy is suitable for both MSIs and BFPs.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          Biodegradable metals

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo corrosion of four magnesium alloys and the associated bone response.

            Degrading metal alloys are a new class of implant materials suitable for bone surgery. The aim of this study was to investigate the degradation mechanism at the bone-implant interface of different degrading magnesium alloys in bone and to determine their effect on the surrounding bone. Sample rods of four different magnesium alloys and a degradable polymer as a control were implanted intramedullary into the femora of guinea pigs. After 6 and 18 weeks, uncalcified sections were generated for histomorphologic analysis. The bone-implant interface was characterized in uncalcified sections by scanning electron microscopy (SEM), element mapping and X-ray diffraction. Results showed that metallic implants made of magnesium alloys degrade in vivo depending on the composition of the alloying elements. While the corrosion layer of all magnesium alloys accumulated with biological calcium phosphates, the corrosion layer was in direct contact with the surrounding bone. The results further showed high mineral apposition rates and an increased bone mass around the magnesium rods, while no bone was induced in the surrounding soft tissue. From the results of this study, there is a strong rationale that in this research model, high magnesium ion concentration could lead to bone cell activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The development of binary Mg-Ca alloys for use as biodegradable materials within bone.

              Binary Mg-Ca alloys with various Ca contents were fabricated under different working conditions. X-ray diffraction (XRD) analysis and optical microscopy observations showed that Mg-xCa (x=1-3 wt%) alloys were composed of two phases, alpha (Mg) and Mg2Ca. The results of tensile tests and in vitro corrosion tests indicated that the mechanical properties could be adjusted by controlling the Ca content and processing treatment. The yield strength (YS), ultimate tensile strength (UTS) and elongation decreased with increasing Ca content. The UTS and elongation of as-cast Mg-1Ca alloy (71.38+/-3.01 MPa and 1.87+/-0.14%) were largely improved after hot rolling (166.7+/-3.01 MPa and 3+/-0.78%) and hot extrusion (239.63+/-7.21 MPa and 10.63+/-0.64%). The in vitro corrosion test in simulated body fluid (SBF) indicated that the microstructure and working history of Mg-xCa alloys strongly affected their corrosion behaviors. An increasing content of Mg2Ca phase led to a higher corrosion rate whereas hot rolling and hot extrusion could reduce it. The cytotoxicity evaluation using L-929 cells revealed that Mg-1Ca alloy did not induce toxicity to cells, and the viability of cells for Mg-1Ca alloy extraction medium was better than that of control. Moreover, Mg-1Ca alloy pins, with commercial pure Ti pins as control, were implanted into the left and right rabbit femoral shafts, respectively, and observed for 1, 2 and 3 months. High activity of osteoblast and osteocytes were observed around the Mg-1Ca alloy pins as shown by hematoxylin and eosin stained tissue sections. Radiographic examination revealed that the Mg-1Ca alloy pins gradually degraded in vivo within 90 days and the newly formed bone was clearly seen at month 3. Both the in vitro and in vivo corrosion suggested that a mixture of Mg(OH)2 and hydroxyapatite formed on the surface of Mg-1Ca alloy with the extension of immersion/implantation time. In addition, no significant difference (p>0.05) of serum magnesium was detected at different degradation stages. All these results revealed that Mg-1Ca alloy had the acceptable biocompatibility as a new kind of biodegradable implant material. Based on the above results, a solid alloy/liquid solution interface model was also proposed to interpret the biocorrosion process and the associated hydroxyapatite mineralization.
                Bookmark

                Author and article information

                Journal
                Materials (Basel)
                Materials (Basel)
                materials
                Materials
                MDPI
                1996-1944
                19 January 2020
                January 2020
                : 13
                : 2
                : 473
                Affiliations
                Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; y-nakao@ 123456hoku-iryo-u.ac.jp (Y.N.); r-ishikawa@ 123456hoku-iryo-u.ac.jp (R.I.); tsuchida_d@ 123456hoku-iryo-u.ac.jp (D.T.); iijima@ 123456hoku-iryo-u.ac.jp (M.I.)
                Author notes
                [* ]Correspondence: kawamura@ 123456hoku-iryo-u.ac.jp ; Tel.: +81-133-23-3041
                Article
                materials-13-00473
                10.3390/ma13020473
                7013406
                31963840
                44958b28-dd31-405f-a2a4-49695ce467de
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 December 2019
                : 15 January 2020
                Categories
                Article

                magnesium,magnesium alloy,implant,bioabsorbable material,micro-ct,bv/tv,bic,orthodontic,miniscrew

                Comments

                Comment on this article