3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references179

          • Record: found
          • Abstract: found
          • Article: not found

          Abscisic acid biosynthesis and catabolism.

          The level of abscisic acid (ABA) in any particular tissue in a plant is determined by the rate of biosynthesis and catabolism of the hormone. Therefore, identifying all the genes involved in the metabolism is essential for a complete understanding of how this hormone directs plant growth and development. To date, almost all the biosynthetic genes have been identified through the isolation of auxotrophic mutants. On the other hand, among several ABA catabolic pathways, current genomic approaches revealed that Arabidopsis CYP707A genes encode ABA 8'-hydroxylases, which catalyze the first committed step in the predominant ABA catabolic pathway. Identification of ABA metabolic genes has revealed that multiple metabolic steps are differentially regulated to fine-tune the ABA level at both transcriptional and post-transcriptional levels. Furthermore, recent ongoing studies have given new insights into the regulation and site of ABA metabolism in relation to its physiological roles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NF-κB, an active player in human cancers.

            NF-κB comprises a family of five transcription factors that form distinct protein complexes, which bind to consensus DNA sequences at promoter regions of responsive genes regulating cellular processes. The past three decades have witnessed remarkable progress in understanding the NF-κB signaling pathway in physiologic and pathologic conditions. The role of NF-κB in human cancer initiation, development, metastasis, and resistance to treatment has drawn particular attention. A significant number of human cancers have constitutive NF-κB activity due to the inflammatory microenvironment and various oncogenic mutations. NF-κB activity not only promotes tumor cells' proliferation, suppresses apoptosis, and attracts angiogenesis, but it also induces epithelial-mesenchymal transition, which facilitates distant metastasis. In certain circumstances, NF-κB activation may also remodel local metabolism and anergize the immune system to favor tumor growth. Suppression of NF-κB in myeloid cells or tumor cells usually leads to tumor regression, which makes the NF-κB pathway a promising therapeutic target. However, because of its vital role in various biologic activities, components of the NF-κB pathway need to be carefully selected and evaluated to design targeted therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health.

              Carotenoids are lipophilic isoprenoid compounds synthesized by all photosynthetic organisms and some non-photosynthetic prokaryotes and fungi. With some notable exceptions, animals (including humans) do not produce carotenoids de novo but take them in their diets. In photosynthetic systems carotenoids are essential for photoprotection against excess light and contribute to light harvesting, but perhaps they are best known for their properties as natural pigments in the yellow to red range. Carotenoids can be associated to fatty acids, sugars, proteins, or other compounds that can change their physical and chemical properties and influence their biological roles. Furthermore, oxidative cleavage of carotenoids produces smaller molecules such as apocarotenoids, some of which are important pigments and volatile (aroma) compounds. Enzymatic breakage of carotenoids can also produce biologically active molecules in both plants (hormones, retrograde signals) and animals (retinoids). Both carotenoids and their enzymatic cleavage products are associated with other processes positively impacting human health. Carotenoids are widely used in the industry as food ingredients, feed additives, and supplements. This review, contributed by scientists of complementary disciplines related to carotenoid research, covers recent advances and provides a perspective on future directions on the subjects of carotenoid metabolism, biotechnology, and nutritional and health benefits.
                Bookmark

                Author and article information

                Journal
                Trends in Food Science & Technology
                Trends in Food Science & Technology
                Elsevier BV
                09242244
                May 2020
                May 2020
                : 99
                : 389-401
                Article
                10.1016/j.tifs.2020.03.013
                29654730
                452df57b-ca8a-43b4-ac2c-496994e3e247
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article