3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Robot-assisted thoracic surgery versus video-assisted thoracic surgery for lung lobectomy or segmentectomy in patients with non-small cell lung cancer: a meta-analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          It remains no clear conclusion about which is better between robot-assisted thoracic surgery (RATS) and video-assisted thoracic surgery (VATS) for the treatment of patients with non-small cell lung cancer (NSCLC). Therefore, this meta-analysis aimed to compare the short-term and long-term efficacy between RATS and VATS for NSCLC.

          Methods

          Pubmed, Cochrane Library, Embase, China National Knowledge Infrastructure (CNKI), Medline, and Web of Science databases were comprehensively searched for studies published before December 2020. The quality of the articles was evaluated using the Newcastle-Ottawa Scale (NOS) and the data analyzed using the Review Manager 5.3 software. Fixed or random effect models were applied according to heterogeneity. Subgroup analysis and sensitivity analysis were conducted.

          Results

          A total of 18 studies including 11,247 patients were included in the meta-analyses, of which 5114 patients were in the RATS group and 6133 in the VATS group. Compared with VATS, RATS was associated with less blood loss (WMD = − 50.40, 95% CI -90.32 ~ − 10.48, P = 0.010), lower conversion rate (OR = 0.50, 95% CI 0.43 ~ 0.60, P < 0.001), more harvested lymph nodes (WMD = 1.72, 95% CI 0.63 ~ 2.81, P = 0.002) and stations (WMD = 0.51, 95% CI 0.15 ~ 0.86, P = 0.005), shorter duration of postoperative chest tube drainage (WMD = − 0.61, 95% CI -0.78 ~ − 0.44, P < 0.001) and hospital stay (WMD = − 1.12, 95% CI -1.58 ~ − 0.66, P < 0.001), lower overall complication rate (OR = 0.90, 95% CI 0.83 ~ 0.99, P = 0.020), lower recurrence rate (OR = 0.51, 95% CI 0.36 ~ 0.72, P < 0.001), and higher cost (WMD = 3909.87 USD, 95% CI 3706.90 ~ 4112.84, P < 0.001). There was no significant difference between RATS and VATS in operative time, mortality, overall survival (OS), and disease-free survival (DFS). Sensitivity analysis showed that no significant differences were found between the two techniques in conversion rate, number of harvested lymph nodes and stations, and overall complication.

          Conclusions

          The results revealed that RATS is a feasible and safe technique compared with VATS in terms of short-term and long-term outcomes. Moreover, more randomized controlled trials comparing the two techniques with rigorous study designs are still essential to evaluate the value of robotic surgery for NSCLC.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s12885-021-08241-5.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries

          This article provides a status report on the global burden of cancer worldwide using the GLOBOCAN 2018 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer, with a focus on geographic variability across 20 world regions. There will be an estimated 18.1 million new cancer cases (17.0 million excluding nonmelanoma skin cancer) and 9.6 million cancer deaths (9.5 million excluding nonmelanoma skin cancer) in 2018. In both sexes combined, lung cancer is the most commonly diagnosed cancer (11.6% of the total cases) and the leading cause of cancer death (18.4% of the total cancer deaths), closely followed by female breast cancer (11.6%), prostate cancer (7.1%), and colorectal cancer (6.1%) for incidence and colorectal cancer (9.2%), stomach cancer (8.2%), and liver cancer (8.2%) for mortality. Lung cancer is the most frequent cancer and the leading cause of cancer death among males, followed by prostate and colorectal cancer (for incidence) and liver and stomach cancer (for mortality). Among females, breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death, followed by colorectal and lung cancer (for incidence), and vice versa (for mortality); cervical cancer ranks fourth for both incidence and mortality. The most frequently diagnosed cancer and the leading cause of cancer death, however, substantially vary across countries and within each country depending on the degree of economic development and associated social and life style factors. It is noteworthy that high-quality cancer registry data, the basis for planning and implementing evidence-based cancer control programs, are not available in most low- and middle-income countries. The Global Initiative for Cancer Registry Development is an international partnership that supports better estimation, as well as the collection and use of local data, to prioritize and evaluate national cancer control efforts. CA: A Cancer Journal for Clinicians 2018;0:1-31. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Estimating the mean and variance from the median, range, and the size of a sample

              Background Usually the researchers performing meta-analysis of continuous outcomes from clinical trials need their mean value and the variance (or standard deviation) in order to pool data. However, sometimes the published reports of clinical trials only report the median, range and the size of the trial. Methods In this article we use simple and elementary inequalities and approximations in order to estimate the mean and the variance for such trials. Our estimation is distribution-free, i.e., it makes no assumption on the distribution of the underlying data. Results We found two simple formulas that estimate the mean using the values of the median (m), low and high end of the range (a and b, respectively), and n (the sample size). Using simulations, we show that median can be used to estimate mean when the sample size is larger than 25. For smaller samples our new formula, devised in this paper, should be used. We also estimated the variance of an unknown sample using the median, low and high end of the range, and the sample size. Our estimate is performing as the best estimate in our simulations for very small samples (n ≤ 15). For moderately sized samples (15 70), the formula range/6 gives the best estimator for the standard deviation (variance). We also include an illustrative example of the potential value of our method using reports from the Cochrane review on the role of erythropoietin in anemia due to malignancy. Conclusion Using these formulas, we hope to help meta-analysts use clinical trials in their analysis even when not all of the information is available and/or reported.
                Bookmark

                Author and article information

                Contributors
                sunguangyuan@126.com
                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central (London )
                1471-2407
                3 May 2021
                3 May 2021
                2021
                : 21
                : 498
                Affiliations
                [1 ]GRID grid.73113.37, ISNI 0000 0004 0369 1660, Student of the College of Basic Medical Sciences, , Naval Medical University, ; No. 800 Xiangyin Road, Yangpu District, Shanghai, 200433 China
                [2 ]Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai, 200003 China
                Article
                8241
                10.1186/s12885-021-08241-5
                8094485
                33941112
                4547aa42-715f-4ead-9fff-5cd23915a7c6
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 13 January 2021
                : 22 April 2021
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Oncology & Radiotherapy
                robot-assisted thoracic surgery,video-assisted thoracic surgery,lobectomy,segmentectomy,non-small cell lung cancer

                Comments

                Comment on this article