1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory : GSK-3, phosphorylated tau, and impaired memory

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurofibrillary tangles (NFTs) consisting of the hyperphosphorylated microtubule-associated protein tau are a defining pathological characteristic of Alzheimer's disease (AD). Hyperphosphorylation of tau is hypothesized to impair the microtubule stabilizing function of tau, leading to the formation of paired helical filaments and neuronal death. Glycogen synthase kinase-3 (GSK-3) has been shown to be one of several kinases that mediate tau hyperphosphorylation in vitro. However, molecular mechanisms underlying overactivation of GSK-3 and its potential linkage to AD-like pathologies in vivo remain unclear. Here, we demonstrate that injection of wortmannin (a specific inhibitor of phosphoinositol-3 kinase) or GF-109203X (a specific inhibitor of protein kinase C) into the left ventricle of rat brains leads to overactivation of GSK-3, hyperphosphorylation of tau at Ser 396/404/199/202 and, most significantly, impaired spatial memory. The effects of wortmannin and GF-109203X are additive. Significantly, specific inhibition of GSK-3 activity by LiCl prevents hyperphosphorylation of tau, and spatial memory impairment resulting from PI3K and PKC inhibition. These results indicate that in vivo inhibition of phosphoinositol-3 kinase and protein kinase C results in overactivation of GSK-3 and tau hyperphosphorylation and support a direct role of GSK-3 in the formation of AD-like cognitive deficits.

          Related collections

          Most cited references 44

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of oestrogen during menopause on risk and age at onset of Alzheimer's disease.

          Oestrogen use by postmenopausal women has many health benefits, but findings on the effect of oestrogen in Alzheimer's disease are conflicting. Oestrogen promotes the growth and survival of cholinergic neurons and could decrease cerebral amyloid deposition, both of which may delay the onset or prevent Alzheimer's disease. To investigate whether use of oestrogen during the postmenopausal period affects the risk of Alzheimer's disease, we studied 1124 elderly women who were initially free of Alzheimer's disease, Parkinson's disease, and stroke, and who were taking part in a longitudinal study of ageing and health in a New York City community. Relative risks and age-at-onset distributions were calculated from simple and adjusted Cox proportional hazards models. Standard annual clinical assessments and criterion-based diagnoses were used in follow-up (range 1-5 years). Overall, 156 (12.5%) women reported taking oestrogen after onset of menopause. The age at onset of Alzheimer's disease was significantly later in women who had taken oestrogen than in those who did not and the relative risk of the disease was significantly reduced (9/156 [5.8%] oestrogen users vs 158/968 [16.3%] nonusers; 0.40 [95% Cl 0.22-0.85], p < 0.01), even after adjustment for differences in education, ethnic origin, and apolipoprotein-E genotype. Women who had used oestrogen for longer than 1 year had a greater reduction in risk; none of 23 women who were taking oestrogen at study enrolment has developed Alzheimer's disease. Oestrogen use in postmenopausal women may delay the onset and decrease the risk of Alzheimer's disease. Prospective studies are needed to establish the dose and duration of oestrogen required to provide this benefit and to assess its safety in elderly postmenopausal women.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses.

            Phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) is rapidly produced upon exposure of neutrophils to the chemoattractant N-formylmethionyl-leucylphenylalanine (fMLP), and has been proposed to act as a second messenger mediating actin polymerization and respiratory-burst activity. Here we present evidence that wortmannin, a known inhibitor of respiratory-burst activity, acts on PtdIns 3-kinase, the enzyme producing PtdInsP3 from PtdIns(4,5)P2. Pretreatment of 32P-labelled human neutrophils with 100 nM wortmannin totally abolished fMLP-mediated PtdInsP3 production, raised PtdInsP2 levels, and did not affect cellular PtdInsP and PtdIns contents. The inhibitory effect on PtdInsP3 formation in intact cells was dose-dependent, with an IC50 of approximately 5 nM. Similar results were obtained with PtdIns 3-kinase immunoprecipitated by antibodies against the p85 regulatory subunit: wortmannin totally inhibited PtdIns3P production in immunoprecipitates at concentrations of 10-100 nM (IC50 approximately 1 nM). These results illustrate the direct and specific inhibition of PtdIns 3-kinase by wortmannin. Since agonist-mediated respiratory-burst activation is most sensitive to wortmannin (IC50 = 12 nM), this suggests that agonist-mediated PtdInsP3 formation is indispensable for this cell response. Neutrophils pretreated with wortmannin develop oscillatory changes in F-actin content, but actin polymerization in response to fMLP is not inhibited. This, and the absence of PtdInsP3 under these conditions, are in agreement with a modulatory role for PtdInsP3 in cytoskeletal rearrangements, but imply that PtdInsP3 production is not a primary event triggering elongation of actin filaments in neutrophils.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease.

              The microtubule assembly-promoting activity of different pools of tau protein isolated from Alzheimer disease (AD) and control brains and the effect of dephosphorylation on this activity were studied. Tau isolated from a 2.5% perchloric extract of AD brain had almost the same activity as that obtained from control brain, and this activity did not change significantly on dephosphorylation. Abnormally phosphorylated tau (AD P-tau) isolated from brain homogenate of AD patients had little activity, and upon dephosphorylation with alkaline phosphatase, its activity increased to approximately the same level as the acid-soluble tau. Addition of AD P-tau to a mixture of normal tau and tubulin inhibited microtubule assembly. AD P-tau bound to normal tau but not to tubulin. These studies suggest that the abnormal phosphorylation of tau might be responsible for the breakdown of microtubules in affected neurons in AD not only because the altered protein has little microtubule-promoting activity but also because it interacts with normal tau, making the latter unavailable for promoting the assembly of tubulin into microtubules.
                Bookmark

                Author and article information

                Journal
                Journal of Neurochemistry
                Wiley
                00223042
                14714159
                December 2003
                November 14 2003
                : 87
                : 6
                : 1333-1344
                Article
                10.1046/j.1471-4159.2003.02070.x
                14713290
                457b9aa7-b85e-4abd-bffd-94ccbec16251
                © 2003

                Comments

                Comment on this article