25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Plasmonic nanorod metamaterials for biosensing.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Label-free plasmonic biosensors rely either on surface plasmon polaritons or on localized surface plasmons on continuous or nanostructured noble-metal surfaces to detect molecular-binding events. Despite undisputed advantages, including spectral tunability, strong enhancement of the local electric field and much better adaptability to modern nanobiotechnology architectures, localized plasmons demonstrate orders of magnitude lower sensitivity compared with their guided counterparts. Here, we demonstrate an improvement in biosensing technology using a plasmonic metamaterial that is capable of supporting a guided mode in a porous nanorod layer. Benefiting from a substantial overlap between the probing field and the active biological substance incorporated between the nanorods and a strong plasmon-mediated energy confinement inside the layer, this metamaterial provides an enhanced sensitivity to refractive-index variations of the medium between the rods (more than 30,000 nm per refractive-index unit). We demonstrate the feasibility of our approach using a standard streptavidin-biotin affinity model and record considerable improvement in the detection limit of small analytes compared with conventional label-free plasmonic devices.

          Related collections

          Author and article information

          Journal
          Nat Mater
          Nature materials
          Springer Science and Business Media LLC
          1476-1122
          1476-1122
          Nov 2009
          : 8
          : 11
          Affiliations
          [1 ] Laboratoire Lasers, Plasmas et Procédés Photoniques (LP3 UMR 6182 CNRS), Faculté des Sciences de Luminy, Université de Méditerranée, 163 Avenue de Luminy, 13288 Marseille Cedex 09, France.
          Article
          nmat2546
          10.1038/nmat2546
          19820701
          45a52f01-b2b2-4a44-8953-979a512d79fd
          History

          Comments

          Comment on this article