1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Engineering a passivating electric double layer for high performance lithium metal batteries

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In electrochemical devices, such as batteries, traditional electric double layer (EDL) theory holds that cations in the cathode/electrolyte interface will be repelled during charging, leaving a large amount of free solvents. This promotes the continuous anodic decomposition of the electrolyte, leading to a limited operation voltage and cycle life of the devices. In this work, we design a new EDL structure with adaptive and passivating properties. It is enabled by adding functional anionic additives in the electrolyte, which can selectively bind with cations and free solvents, forming unique cation-rich and branch-chain like supramolecular polymer structures with high electrochemical stability in the EDL inner layer. Due to this design, the anodic decomposition of ether-based electrolytes is significantly suppressed in the high voltage cathodes and the battery shows outstanding performances such as super-fast charging/discharging and ultra-low temperature applications, which is extremely hard in conventional electrolyte design principle. This unconventional EDL structure breaks the inherent perception of the classical EDL rearrangement mechanism and greatly improve electrochemical performances of the device.

          Abstract

          Developing an electrolyte that is compatible with both high-voltage cathodes and Li metal anodes has always been challenging. Here, the authors created a new strategy by engineering a passivating electric double layer to achieve a fast-charging and lowtemperature high voltage lithium metal batteries.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: not found
          • Article: not found

          VMD: Visual molecular dynamics

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiwfn: a multifunctional wavefunction analyzer.

              Multiwfn is a multifunctional program for wavefunction analysis. Its main functions are: (1) Calculating and visualizing real space function, such as electrostatic potential and electron localization function at point, in a line, in a plane or in a spatial scope. (2) Population analysis. (3) Bond order analysis. (4) Orbital composition analysis. (5) Plot density-of-states and spectrum. (6) Topology analysis for electron density. Some other useful utilities involved in quantum chemistry studies are also provided. The built-in graph module enables the results of wavefunction analysis to be plotted directly or exported to high-quality graphic file. The program interface is very user-friendly and suitable for both research and teaching purpose. The code of Multiwfn is substantially optimized and parallelized. Its efficiency is demonstrated to be significantly higher than related programs with the same functions. Five practical examples involving a wide variety of systems and analysis methods are given to illustrate the usefulness of Multiwfn. The program is free of charge and open-source. Its precompiled file and source codes are available from http://multiwfn.codeplex.com. Copyright © 2011 Wiley Periodicals, Inc.
                Bookmark

                Author and article information

                Contributors
                liukai2019@tsinghua.edu.cn
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                19 April 2022
                19 April 2022
                2022
                : 13
                : 2029
                Affiliations
                GRID grid.12527.33, ISNI 0000 0001 0662 3178, Department of Chemical Engineering, , Tsinghua University, ; Beijing, China
                Author information
                http://orcid.org/0000-0002-8182-1251
                http://orcid.org/0000-0003-3362-180X
                Article
                29761
                10.1038/s41467-022-29761-z
                9018679
                35440573
                461a3cb6-2ba2-44a1-9e60-c2aa1737dc4c
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 5 July 2021
                : 28 March 2022
                Funding
                Funded by: National Nature Science Fund of China (22071133), the National Key Research and Development Program (2019YFC0810703).
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                batteries
                Uncategorized
                batteries

                Comments

                Comment on this article