44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Higher-Order Oligomerization Targets Plasma Membrane Proteins and HIV Gag to Exosomes

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exosomes are secreted organelles that have the same topology as the cell and bud outward (outward is defined as away from the cytoplasm) from endosome membranes or endosome-like domains of plasma membrane. Here we describe an exosomal protein-sorting pathway in Jurkat T cells that selects cargo proteins on the basis of both higher-order oligomerization (the oligomerization of oligomers) and plasma membrane association, acts on proteins seemingly without regard to their function, sequence, topology, or mechanism of membrane association, and appears to operate independently of class E vacuolar protein-sorting (VPS) function. We also show that higher-order oligomerization is sufficient to target plasma membrane proteins to HIV virus–like particles, that diverse Gag proteins possess exosomal-sorting information, and that higher-order oligomerization is a primary determinant of HIV Gag budding/exosomal sorting. In addition, we provide evidence that both the HIV late domain and class E VPS function promote HIV budding by unexpectedly complex, seemingly indirect mechanisms. These results support the hypothesis that HIV and other retroviruses are generated by a normal, nonviral pathway of exosome biogenesis.

          Author Summary

          Exosomes are small, secreted organelles with the same topology as the cell and a similar size and composition as retrovirus particles. Based on these similarities, we proposed that retroviruses are, at their most fundamental level, exosomes. Little is known about the mechanisms of exosome biogenesis. We show here that higher-order oligomerization and plasma membrane binding are sufficient to target proteins into both exosomes and HIV virus-like particles. We also find that the HIV protein Gag, which possesses these general exosomal sorting elements, requires only these elements to bud from human cells. Others have proposed that the HIV p6 domain and the host class E vacuolar protein-sorting (VPS) machinery play direct, essential, and mechanistic roles in HIV budding. However, we show here that p6-deficient HIV can bud from cells at normal levels and that both p6-deficient HIV and exosomes can bud independently of class E VPS function. Thus, it appears that exosome biogenesis pathways mediate the budding of HIV from cells, whereas the HIV p6 domain and the class E VPS machinery promote budding indirectly.

          Abstract

          Experiments in Jurkat T cells suggest that HIV and other retroviruses may co-opt the normal nonviral pathway of exosome biogenesis.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells.

          Many proteins associated with the plasma membrane are known to partition into submicroscopic sphingolipid- and cholesterol-rich domains called lipid rafts, but the determinants dictating this segregation of proteins in the membrane are poorly understood. We suppressed the tendency of Aequorea fluorescent proteins to dimerize and targeted these variants to the plasma membrane using several different types of lipid anchors. Fluorescence resonance energy transfer measurements in living cells revealed that acyl but not prenyl modifications promote clustering in lipid rafts. Thus the nature of the lipid anchor on a protein is sufficient to determine submicroscopic localization within the plasma membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles.

            Dendritic cells constitutively secrete a population of small (50-90 nm diameter) Ag-presenting vesicles called exosomes. When sensitized with tumor antigenic peptides, dendritic cells produce exosomes, which stimulate anti-tumor immune responses and the rejection of established tumors in mice. Using a systematic proteomic approach, we establish the first extensive protein map of a particular exosome population; 21 new exosomal proteins were thus identified. Most proteins present in exosomes are related to endocytic compartments. New exosomal residents include cytosolic proteins most likely involved in exosome biogenesis and function, mainly cytoskeleton-related (cofilin, profilin I, and elongation factor 1alpha) and intracellular membrane transport and signaling factors (such as several annexins, rab 7 and 11, rap1B, and syntenin). Importantly, we also identified a novel category of exosomal proteins related to apoptosis: thioredoxin peroxidase II, Alix, 14-3-3, and galectin-3. These findings led us to analyze possible structural relationships between exosomes and microvesicles released by apoptotic cells. We show that although they both represent secreted populations of membrane vesicles relevant to immune responses, exosomes and apoptotic vesicles are biochemically and morphologically distinct. Therefore, in addition to cytokines, dendritic cells produce a specific population of membrane vesicles, exosomes, with unique molecular composition and strong immunostimulating properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exosome: from internal vesicle of the multivesicular body to intercellular signaling device.

              Exosomes are small membrane vesicles that are secreted by a multitude of cell types as a consequence of fusion of multivesicular late endosomes/lysosomes with the plasma membrane. Depending on their origin, exosomes can play roles in different physiological processes. Maturing reticulocytes externalize obsolete membrane proteins such as the transferrin receptor by means of exosomes, whereas activated platelets release exosomes whose function is not yet known. Exosomes are also secreted by cytotoxic T cells, and these might ensure specific and efficient targeting of cytolytic substances to target cells. Antigen presenting cells, such as B lymphocytes and dendritic cells, secrete MHC class-I- and class-II-carrying exosomes that stimulate T cell proliferation in vitro. In addition, dendritic-cell-derived exosomes, when used as a cell-free vaccine, can eradicate established murine tumors. Although the precise physiological target(s) and functions of exosomes remain largely to be resolved, follicular dendritic cells (accessory cells in the germinal centers of secondary lymphoid organs) have recently been shown to bind B-lymphocyte-derived exosomes at their cell surface, which supports the notion that exosomes play an immunoregulatory role. Finally, since exosomes are derived from multivesicular bodies, their molecular composition might provide clues to the mechanism of protein and lipid sorting in endosomes.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                June 2007
                5 June 2007
                : 5
                : 6
                : e158
                Affiliations
                [1]Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
                University of California San Francisco, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: sgould@ 123456jhmi.edu
                Article
                06-PLBI-RA-2411R2 plbi-05-06-19
                10.1371/journal.pbio.0050158
                1885833
                17550307
                46304ae5-433f-4c92-8030-b146d0452158
                Copyright: © 2007 Fang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 19 December 2006
                : 10 April 2007
                Page count
                Pages: 17
                Categories
                Research Article
                Cell Biology
                Infectious Diseases
                Microbiology
                Virology
                Virology
                Viruses
                Custom metadata
                Fang Y, Wu N, Gan X, Yan W, Morrell JC, et al. (2007) Higher-order oligomerization targets plasma membrane proteins and HIV Gag to exosomes. PLoS Biol 5(6): e158. doi: 10.1371/journal.pbio.0050158

                Life sciences
                Life sciences

                Comments

                Comment on this article