9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biosynthesis, evolution and ecology of microbial terpenoids

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Terpenoids have diverse bioecological roles in all kingdoms of life. Here we discuss the evolution and ecological functions of microbial terpenoids and their possible applications.

          Abstract

          Covering: through June 2021

          Related collections

          Most cited references258

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          KEGG as a reference resource for gene and protein annotation

          KEGG (http://www.kegg.jp/ or http://www.genome.jp/kegg/) is an integrated database resource for biological interpretation of genome sequences and other high-throughput data. Molecular functions of genes and proteins are associated with ortholog groups and stored in the KEGG Orthology (KO) database. The KEGG pathway maps, BRITE hierarchies and KEGG modules are developed as networks of KO nodes, representing high-level functions of the cell and the organism. Currently, more than 4000 complete genomes are annotated with KOs in the KEGG GENES database, which can be used as a reference data set for KO assignment and subsequent reconstruction of KEGG pathways and other molecular networks. As an annotation resource, the following improvements have been made. First, each KO record is re-examined and associated with protein sequence data used in experiments of functional characterization. Second, the GENES database now includes viruses, plasmids, and the addendum category for functionally characterized proteins that are not represented in complete genomes. Third, new automatic annotation servers, BlastKOALA and GhostKOALA, are made available utilizing the non-redundant pangenome data set generated from the GENES database. As a resource for translational bioinformatics, various data sets are created for antimicrobial resistance and drug interaction networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights

            Since its first release over a decade ago, the MetaboAnalyst web-based platform has become widely used for comprehensive metabolomics data analysis and interpretation. Here we introduce MetaboAnalyst version 5.0, aiming to narrow the gap from raw data to functional insights for global metabolomics based on high-resolution mass spectrometry (HRMS). Three modules have been developed to help achieve this goal, including: (i) a LC–MS Spectra Processing module which offers an easy-to-use pipeline that can perform automated parameter optimization and resumable analysis to significantly lower the barriers to LC-MS1 spectra processing; (ii) a Functional Analysis module which expands the previous MS Peaks to Pathways module to allow users to intuitively select any peak groups of interest and evaluate their enrichment of potential functions as defined by metabolic pathways and metabolite sets; (iii) a Functional Meta-Analysis module to combine multiple global metabolomics datasets obtained under complementary conditions or from similar studies to arrive at comprehensive functional insights. There are many other new functions including weighted joint-pathway analysis, data-driven network analysis, batch effect correction, merging technical replicates, improved compound name matching, etc. The web interface, graphics and underlying codebase have also been refactored to improve performance and user experience. At the end of an analysis session, users can now easily switch to other compatible modules for a more streamlined data analysis. MetaboAnalyst 5.0 is freely available at https://www.metaboanalyst.ca . Graphical Abstract From raw data to statistical and functional insights using MetaboAnalyst 5.0.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking.

              The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu), an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of 'living data' through continuous reanalysis of deposited data.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NPRRDF
                Natural Product Reports
                Nat. Prod. Rep.
                Royal Society of Chemistry (RSC)
                0265-0568
                1460-4752
                February 23 2022
                2022
                : 39
                : 2
                : 249-272
                Affiliations
                [1 ]Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
                [2 ]Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
                [3 ]University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
                [4 ]Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan
                Article
                10.1039/D1NP00047K
                34612321
                466e1deb-a725-4b38-860c-89be3f78f91d
                © 2022

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article