1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      BCAR1 promotes proliferation and cell growth in lung adenocarcinoma via upregulation of POLR2A

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          This study was designed to investigate the effects of a novel carcinogenetic molecule, p130cas (breast cancer antiestrogen resistance protein 1 or BCAR1) on proliferation and cell growth in lung adenocarcinoma. The study also aimed to identify the possible underlying signal networks of BCAR1.

          Methods

          First, we evaluated proliferation, cell colony formation, apoptosis, and cell cycle after BCAR1 was knocked out (KO) using CRISPR‐Cas9 technology in H1975 and H1299 human lung adenocarcinoma cells. Subsequently, BCAR1 was upregulated in 293T cells and immunoprecipitation‐mass spectrometry (IP‐MS) was used with bioinformatics analysis to screen for potential networks of BCAR1 interacting proteins. Ultimately, we validated the correlated expressions of BCAR1 and a selected hub gene, RNA polymerase II subunit A (POLR2A), in 54 lung adenocarcinoma tissues, as well as in H1975 and H1299 cells.

          Results

          Cell proliferation of H1975 and H1299 was significantly inhibited following BCAR1‐KO. Colony formation of H1975 cells was also significantly decreased following BCAR1‐KO. IP‐MS demonstrated 419 potential proteins that may interact with BCAR1. Among them, 68 genes were significantly positively correlated to BCAR1 expression, as verified by TCGA. Six hub genes were revealed by PPI String. High expression of POLR2A, MAPK3, MOV10, and XAB2 predicted poor prognosis in lung adenocarcinoma, as verified by the K‐M plotter database. POLR2A and MAPK3 are involved in both catalytic activity and transferase activity. POLR2A and BCAR1 were significantly increased in lung cancer tissues as compared with matched normal tissues. High expression of POLR2A was significantly positively correlated to BCAR1 overexpression and predicted poor prognosis in 54 lung cancer cases. POLR2A expression was significantly decreased following BCAR1‐KO in H1975 and H1299 cells.

          Conclusions

          BCAR1 promotes proliferation and cell growth, probably via upregulation of POLR2A and subsequent enhancement of catalytic and transferase activities. However, additional robust studies are required to elucidate the mechanisms involved.

          Abstract

          In this work, we elaborated the enhancement effect of a novel carcinogenetic molecule, ie, p130cas (breast cancer antiestrogen resistance 1, BCAR1) on proliferation and cell growth of lung cancer cells,and to explore the possible networks of interacting proteins of BCAR1. We found BCAR1 can promote proliferation and cell growth, probably via upregulation of POLR2A and subsequent enhancement of catalytic activity and transferase activity.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets

          Abstract Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein–protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein–protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge

            The Cancer Genome Atlas (TCGA) is a public funded project that aims to catalogue and discover major cancer-causing genomic alterations to create a comprehensive “atlas” of cancer genomic profiles. So far, TCGA researchers have analysed large cohorts of over 30 human tumours through large-scale genome sequencing and integrated multi-dimensional analyses. Studies of individual cancer types, as well as comprehensive pan-cancer analyses have extended current knowledge of tumorigenesis. A major goal of the project was to provide publicly available datasets to help improve diagnostic methods, treatment standards, and finally to prevent cancer. This review discusses the current status of TCGA Research Network structure, purpose, and achievements.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-scale CRISPR-Cas9 knockout screening in human cells.

              The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.
                Bookmark

                Author and article information

                Contributors
                chunguom@163.com
                superdb@163.com
                Journal
                Thorac Cancer
                Thorac Cancer
                10.1111/(ISSN)1759-7714
                TCA
                Thoracic Cancer
                John Wiley & Sons Australia, Ltd (Melbourne )
                1759-7706
                1759-7714
                01 October 2020
                November 2020
                : 11
                : 11 ( doiID: 10.1111/tca.v11.11 )
                : 3326-3336
                Affiliations
                [ 1 ] Thoracic Surgery Department, Institute of Surgery Research Daping Hospital, Army Medical University Chongqing China
                Author notes
                [*] [* ] *Correspondence

                Bo Deng, Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China.

                Tel: +86 13637782166

                Fax: +86 23 68890331

                Email: superdb@ 123456163.com

                [†]

                Chun‐guo Mao, Sha‐sha Jiang and Cheng Shen contributed equally to this paper.

                Author information
                https://orcid.org/0000-0003-3217-143X
                Article
                TCA13676
                10.1111/1759-7714.13676
                7606008
                33001583
                468fcaf3-3e51-4091-b882-38a4788bf607
                © 2020 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 August 2020
                : 08 September 2020
                : 11 September 2020
                Page count
                Figures: 4, Tables: 2, Pages: 11, Words: 6143
                Funding
                Funded by: National Natural Science Foundation of Chongqing City
                Award ID: cstc2018jcyjAX0592
                Funded by: National Natural Science Foundations of China (NSFC) , open-funder-registry 10.13039/501100001809;
                Award ID: 81572285
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                November 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.9.3 mode:remove_FC converted:02.11.2020

                bcar1,cell growth,cell proliferation,lung adenocarcinoma,polr2a

                Comments

                Comment on this article